MAXWELL'S EQUATIONS, CONSTITUTIVE RELATIONS, WAVE EQUATION, AND POLARIZATION

2021 ◽  
pp. 1-51
Author(s):  
H. P. Künzle

AbstractIt is shown that Huygens's principle holds for the solutions of Maxwell's equations for p-forms of all degrees in a gravitational plane wave space, while the solutions of the wave equation for 1, 2, and 3-forms, however, may have tails.


Open Physics ◽  
2007 ◽  
Vol 5 (4) ◽  
Author(s):  
Süleyman Demir

AbstractIn this paper, a new representational model based on dual quaternionic matrices is proposed for classical electromagnetism. After demonstrating the isomorphic matrix representations of dual quaternions, Maxwell’s equations and the constitutive relations for electromagnetism are expressed in terms of dual quaternionic matrices. For this purpose, new 8 × 8 matrices connected with quaternion basis elements have been introduced.


In our earlier paper we have shown that the solutions of both the three-dimensional scalar wave equation, which is also the three-dimensional acoustic equation, and Maxwell’s equations have forms in the wave zone, which, except for a factor 1/ r , represent one-dimensional wave motions along straight lines through the origin. We also showed that it is possible to reconstruct the exact solutions from the asymptotic forms. Thus we could prescribe the solutions in the wave zone and obtain the exact solutions that would lead to them. In the present paper we show how the exact solutions can be obtained from the asymptotic solutions and conversely, through the use of a refined Radon transform, which we introduced in a previous paper. We have thus obtained a way of obtaining the exact three-dimensional solutions from the essentially one-dimensional solutions of the asymp­totic form entirely in terms of transforms. This is an alternative way to obtaining exact solutions in terms of initial values through the use of Riemann functions. The exact solutions that we obtain through the use of the Radon transform are causal and therefore physical solutions. That is, these solutions for time t > 0 could have been obtained from the initial value problem by prescribing the solution and its time-derivative, in the acoustic case, and the electric and magnetic fields, in the case of Maxwell’s equations, at time t = 0. The role of time in the relation between the exact solutions and in the asymptotic solutions is made very explicit in the present paper.


Sign in / Sign up

Export Citation Format

Share Document