nonstandard finite difference
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 63)

H-INDEX

24
(FIVE YEARS 4)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
Mohammad Mehdizadeh Khalsaraei ◽  
Mohammad Mehdi Rashidi ◽  
Ali Shokri ◽  
Higinio Ramos ◽  
Pari Khakzad

An implicit finite difference scheme for the numerical solution of a generalized Black–Scholes equation is presented. The method is based on the nonstandard finite difference technique. The positivity property is discussed and it is shown that the proposed method is consistent, stable and also the order of the scheme respect to the space variable is two. As the Black–Scholes model relies on symmetry of distribution and ignores the skewness of the distribution of the asset, the proposed method will be more appropriate for solving such symmetric models. In order to illustrate the efficiency of the new method, we applied it on some test examples. The obtained results confirm the theoretical behavior regarding the order of convergence. Furthermore, the numerical results are in good agreement with the exact solution and are more accurate than other existing results in the literature.


Axioms ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Nauman Ahmed ◽  
Jorge E. Macías-Díaz ◽  
Ali Raza ◽  
Dumitru Baleanu ◽  
Muhammad Rafiq ◽  
...  

Malaria is a deadly human disease that is still a major cause of casualties worldwide. In this work, we consider the fractional-order system of malaria pestilence. Further, the essential traits of the model are investigated carefully. To this end, the stability of the model at equilibrium points is investigated by applying the Jacobian matrix technique. The contribution of the basic reproduction number, R0, in the infection dynamics and stability analysis is elucidated. The results indicate that the given system is locally asymptotically stable at the disease-free steady-state solution when R0<1. A similar result is obtained for the endemic equilibrium when R0>1. The underlying system shows global stability at both steady states. The fractional-order system is converted into a stochastic model. For a more realistic study of the disease dynamics, the non-parametric perturbation version of the stochastic epidemic model is developed and studied numerically. The general stochastic fractional Euler method, Runge–Kutta method, and a proposed numerical method are applied to solve the model. The standard techniques fail to preserve the positivity property of the continuous system. Meanwhile, the proposed stochastic fractional nonstandard finite-difference method preserves the positivity. For the boundedness of the nonstandard finite-difference scheme, a result is established. All the analytical results are verified by numerical simulations. A comparison of the numerical techniques is carried out graphically. The conclusions of the study are discussed as a closing note.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Masho Jima Kabeto ◽  
Gemechis File Duressa

Abstract Objective The main purpose of this paper is to present an accelerated nonstandard finite difference method for solving the singularly perturbed Burger-Huxley equation in order to produce more accurate solutions. Results The quasilinearization technique is used to linearize the nonlinear term. A nonstandard methodology of Mickens procedure is used in the spatial direction and also within the first order temporal direction that construct the first-order finite difference approximation to solve the considered problem numerically. To accelerate the rate of convergence from first to second-order, the Richardson extrapolation technique is applied. Numerical experiments were conducted to support the theoretical results.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3082
Author(s):  
Mohammad Mehdizadeh Khalsaraei ◽  
Ali Shokri ◽  
Samad Noeiaghdam ◽  
Maryam Molayi

This paper aims to present two nonstandard finite difference (NFSD) methods to solve an SIR epidemic model. The proposed methods have important properties such as positivity and boundedness and they also preserve conservation law. Numerical comparisons confirm that the accuracy of our method is better than that of other existing standard methods such as the second-order Runge–Kutta (RK2) method, the Euler method and some ready-made MATLAB codes.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Dumitru Baleanu ◽  
Sadegh Zibaei ◽  
Mehran Namjoo ◽  
Amin Jajarmi

AbstractThe aim of this paper is to introduce and analyze a novel fractional chaotic system including quadratic and cubic nonlinearities. We take into account the Caputo derivative for the fractional model and study the stability of the equilibrium points by the fractional Routh–Hurwitz criteria. We also utilize an efficient nonstandard finite difference (NSFD) scheme to implement the new model and investigate its chaotic behavior in both time-domain and phase-plane. According to the obtained results, we find that the new model portrays both chaotic and nonchaotic behaviors for different values of the fractional order, so that the lowest order in which the system remains chaotic is found via the numerical simulations. Afterward, a nonidentical synchronization is applied between the presented model and the fractional Volta equations using an active control technique. The numerical simulations of the master, the slave, and the error dynamics using the NSFD scheme are plotted showing that the synchronization is achieved properly, an outcome which confirms the effectiveness of the proposed active control strategy.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mohammad Mehdizadeh Khalsaraei ◽  
Ali Shokri ◽  
Zahra Mohammadnia ◽  
Hamid Mohammad Sedighi

In this paper, we use a numerical method for solving the nonlinear Black–Scholes partial differential equation of the European option under transaction costs, which is based on the nonstandard discretization of the spatial derivatives. The proposed scheme, in addition to the unconditional positivity, is stable, consistent, and monotone. In order to illustrate the efficiency of the new method, numerical results have been performed by four models.


Sign in / Sign up

Export Citation Format

Share Document