wave equation
Recently Published Documents





2022 ◽  
Vol 389 ◽  
pp. 114366
Erik Burman ◽  
Omar Duran ◽  
Alexandre Ern

2022 ◽  
Lingyun Yang ◽  
Guochen Wu ◽  
Yunliang Wang ◽  
Qingyang Li ◽  
Hao Zhang

2022 ◽  
Vol 12 (1) ◽  
Teun Schaeken ◽  
Leo Hoogerbrugge ◽  
Eric Verschuur

AbstractThe acoustic wave equation describes wave propagation directly from basic physical laws, even in heterogeneous acoustic media. When numerically simulating waves with the wave equation, contrasts in the medium parameters automatically generate all scattering effects. For some applications - such as propagation analysis or certain wave-equation based imaging techniques - it is desirable to suppress these reflections, as we are only interested in the transmitted wave-field. To achieve this, a modification to the constitutive relations is proposed, yielding an extra term that suppresses waves with reference to a preferred direction. The scale-factor $$\alpha$$ α of this extra term can either be interpreted as a penetration depth or as a typical decay time. This modified theory is implemented using a staggered-grid, time-domain finite difference scheme, where the acoustic Poynting-vector is used to estimate the local propagation direction of the wave-field. The method was successfully used to suppress reflections in media with bone tissue (medical ultrasound) and geophysical subsurface structures, while introducing only minor perturbations to the transmitted wave-field and a small increase in computation time.

Geophysics ◽  
2022 ◽  
pp. 1-71
Shu-Li Dong ◽  
Jing-Bo Chen

Effective frequency-domain numerical schemes were central for forward modeling and inversion of the elastic wave equation. The rotated optimal nine-point scheme was a highly used finite-difference numerical scheme. This scheme made a weighted average of the derivative terms of the elastic wave equations in the original and the rotated coordinate systems. In comparison with the classical nine-point scheme, it could simulate S-waves better and had higher accuracy at nearly the same computational cost. Nevertheless, this scheme limited the rotation angle to 45°; thus, the grid sampling intervals in the x- and z-directions needed to be equal. Otherwise, the grid points would not lie on the axes, which dramatically complicates the scheme. Affine coordinate systems did not constrain axes to be perpendicular to each other, providing enhanced flexibility. Based on the affine coordinate transformations, we developed a new affine generalized optimal nine-point scheme. At the free surface, we applied the improved free-surface expression with an adaptive parameter-modified strategy. The new optimal scheme had no restriction that the rotation angle must be 45°. Dispersion analysis found that our scheme could effectively reduce the required number of grid points per shear wavelength for equal and unequal sampling intervals compared to the classical nine-point scheme. Moreover, this reduction improved with the increase of Poisson’s ratio. Three numerical examples demonstrated that our scheme could provide more accurate results than the classical nine-point scheme in terms of the internal and the free-surface grid points.

Sign in / Sign up

Export Citation Format

Share Document