Synaptic organization of substance P-like immunoreactive amacrine cells in goldfish retina

1985 ◽  
Vol 231 (2) ◽  
pp. 232-238 ◽  
Author(s):  
Stephen Yazulla ◽  
Keith M. Studholme ◽  
Charles L. Zucker
1990 ◽  
Vol 4 (3) ◽  
pp. 299-309 ◽  
Author(s):  
Stephen Yazulla ◽  
Keith M. Studholme

AbstractThe glycinergic system in goldfish retina was studied by immunocytochemical localization of glycine antiserum at the light-microscopical level. Numerous amacrine cells, a type of interplexiform cell, interstitial cell, and displaced amacrine cell were glycine-immunoreactive (IR). Amacrine cells, accounting for 97% of the glycine-IR neurons, were of four types based solely on their level of dendritic stratification: stratified amacrine cells of the first, third, and fifth sublayers and bistratified amacrine cells of the first and fifth sublayers. Double-labeling experiments were carried out to determine possible co-localization of glycine-IR with GABA-IR, serotonin-IR, substance P-IR and somatostatin-IR. No evidence for co-localization of glycine-IR with these other transmitter substances was found, despite reports of co-localization of these substances in retinas of other species. Glycinergic neurons in goldfish retina appear to consist of a heterogeneous population of at least seven morphologically distinct subtypes that are also neurochemically distinct in regard to GABA, serotonin, substance P, and somatostatin. Since dendritic stratification in the inner plexiform layer is correlated with ON-, OFF-response types, we suggest that the subtypes of glycine-IR amacrine cells play different roles in the encoding of visual information.


1992 ◽  
Vol 8 (6) ◽  
pp. 539-544 ◽  
Author(s):  
George S. Ayoub ◽  
Gary Matthews

AbstractRetinal bipolar cells are non-spiking interneurons that relay information from photoreceptors to amacrine and ganglion cells. In turn, bipolar cells receive extensive synaptic feedback from amacrine cells, some of which contain neuropeptides, including substance P. We have examined the effect of substance P on single bipolar neurons isolated from goldfish retina and find that substance P (0.1–1 nM) produced a voltage-dependent inhibition of calcium current in these cells. The inhibition was strongest at negative potentials, with the peak suppression occurring at –20 to –30 mV; at potentials positive to 0 mV, there was little effect on calcium current. Thus, the net effect was to shift the voltage range of activation of calcium current toward more positive potentials. The inhibition of calcium current by substance P required GTP in the patch pipette and was blocked by internal GDP-β-S. Similar effects on calcium current were observed with somatostatin and metenkephalin, which are also found in amacrine cells.


1986 ◽  
Vol 366 (1-2) ◽  
pp. 307-313 ◽  
Author(s):  
Li Hai-Biao ◽  
David W. Marshak ◽  
John E. Dowling ◽  
Dominic Man-Kit Lam

1988 ◽  
Vol 1 (1) ◽  
pp. 13-29 ◽  
Author(s):  
Stephen Yazulla ◽  
Charles L. Zucker

AbstractThe synaptic organization of dopaminergic interplexiform cells (DA-IPC) in the goldfish retina was studied by a combined double-label electron-microscopical (EM) immunocytochemical/autoradiographical study. DA-IPCs were labeled with antisera against tyrosine hydroxylase. The possibility of synaptic contact with GABAergic amacrine cells in the proximal inner plexiform layer (IPL) was studied by using 3H-GABA uptake. Most synaptic input and output from DA-IPC processes involved amacrine cell processes. In addition, synaptic interactions were observed between DA-IPC processes and bipolar cell terminals, other DA-IPC processes, very small dendrites in the IPL, ganglion cell and optic fiber layers (OFL), and cell bodies in the ganglion cell layer (GCL). Input and output synapses with GABAergic amacrine processes also were observed. Two-thirds of the DA-IPC boutons in the proximal IPL were involved in “junctional appositions,” that is, the junctions appeared to be specialized but they were different than classical chemical synapses. The synaptic organization of DA-IPCs in the goldfish IPL appears to be far more complex than previously thought. Although earlier studies have attempted to explain the action of dopamine in terms of interaction only with amacrine cells, the present study shows that effects involving bipolar cells, other DA-IPCs, unidentified processes and cell bodies in the GCL and OFL must be considered as well.


1989 ◽  
Vol 237 (1289) ◽  
pp. 471-488 ◽  

In cat retinal wholemounts, substance-P-like immunoreactivity (SP-IR) was localized in a distinct population of amacrines whose cell bodies were normally placed in the ganglion cell layer. Although displaced amacrines accounted for 80-95% of the SP-IR amacrines in peripheral retina, this proportion decreased considerably within the area centralis, accounting for 50-80% of the labelled cells at maximum density. The SP-IR cells in both the inner nuclear and ganglion cell layers gave rise to well-defined varicose dendrites of uniform appearance that stratified around 60% depth (S3/S4) of the inner plexiform layer. In addition, sparse fine dendrites in stratum 1 (S1) could sometimes be traced to inner nuclear cells and occasionally to displaced amacrines. The combined SP-IR cell density ranged from less than 50 cells mm -2 in the far periphery to more than 500 cells mm -2 in the area centralis; the maximum density showed little individual variation despite wide differences in the proportion of displaced cells. The 39000 SP-IR amacrines in a mapped retina had a triangular topographic distribution, with intermediate isodensity lines extending vertically in superior retina and horizontally along both arms of the visual streak. Colocalization experiments established that all SP-IR cells in cat retina showed GABA-like immunoreactivity, and that the SP-IR amacrines were quite distinct from the cholinergic amacrines identified by choline acetyltransferase immunohistochemistry.


Nature ◽  
1980 ◽  
Vol 283 (5742) ◽  
pp. 87-88 ◽  
Author(s):  
H. J. Karten ◽  
N. Brecha
Keyword(s):  

1993 ◽  
Vol 10 (5) ◽  
pp. 899-906 ◽  
Author(s):  
Carl B. Watt ◽  
Valarie J. Florack

AbstractThe present study was performed as part of a systematic examination of glycine's coexistence with other classical transmitters and neuropeptides in neuronal populations of the larval tiger salamander retina. Substance P immunocytochemistry was combined with either glycine immunocytochemistry or autoradiography of glycine high-affinity uptake to examine whether tiger salamander substance P-amacrine cells express these glycine markers. Double-label analyses revealed two populations of substance P-amacrine cells that express glycine immunoreactivity and glycine high-affinity uptake. The large majority of double-labeled cells were situated in the innermost cell row of the inner nuclear layer, while a smaller number were located in the inner nuclear layer in the second cell row distal to the inner plexiform layer. Double-label immunocytochemistry revealed that these double-labeled cells accounted for 91.7% of substance P-immunoreactive amacrine cells. A slightly lower percentage (90.1%) of substance P-amacrine cells were found to exhibit a glycine high-affinity uptake mechanism. Substance P-amacrine cells that did not co-label for markers of glycine activity were situated in the innermost cell row of the inner nuclear layer. Substance P-immunoreactive displaced amacrine cells were not observed to co-label for either glycine immunoreactivity or glycine high-affinity uptake.The present study reveals that the large majority of substance P-amacrine cells in the larval tiger salamander retina co-express markers of glycine activity. This finding suggests a functional diversity in the population of tiger salamander substance P-amacrine cells relative to their coexisting relationship with a major inhibitory neurotransmitter.


Sign in / Sign up

Export Citation Format

Share Document