synaptic organization
Recently Published Documents


TOTAL DOCUMENTS

511
(FIVE YEARS 75)

H-INDEX

69
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Rotem Ruach ◽  
Nir Ratner ◽  
Scott W. Emmons ◽  
Alon Zaslaver

Neurons are characterized by elaborate tree-like dendritic structures that support local computations by integrating multiple inputs from upstream presynaptic neurons. It is less clear if simple neurons, consisting of a few or even a single neurite, may perform local computations as well. To address this question, we focused on the compact neural network of C. elegans animals for which the full wiring diagram is available, including the coordinates of individual synapses. We find that the positions of the chemical synapses along the neurites are not randomly distributed, nor can they be explained by anatomical constraints. Instead, synapses tend to form clusters, an organization that supports local compartmentalized computations. In mutually-synapsing neurons, connections of opposite polarity cluster separately, suggesting that positive and negative feedback dynamics may be implemented in discrete compartmentalized regions along neurites. In triple-neuron circuits, the non-random synaptic organization may facilitate local functional roles, such as signal integration and coordinated activation of functionally-related downstream neurons. These clustered synaptic topologies emerge as a guiding principle in the network presumably to facilitate distinct parallel functions along a single neurite, effectively increasing the computational capacity of the neural network.


Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan H. Kirchner ◽  
Julijana Gjorgjieva

Abstract Single neurons in the brain exhibit astounding computational capabilities, which gradually emerge throughout development and enable them to become integrated into complex neural circuits. These capabilities derive in part from the precise arrangement of synaptic inputs on the neurons’ dendrites. While the full computational benefits of this arrangement are still unknown, a picture emerges in which synapses organize according to their functional properties across multiple spatial scales. In particular, on the local scale (tens of microns), excitatory synaptic inputs tend to form clusters according to their functional similarity, whereas on the scale of individual dendrites or the entire tree, synaptic inputs exhibit dendritic maps where excitatory synapse function varies smoothly with location on the tree. The development of this organization is supported by inhibitory synapses, which are carefully interleaved with excitatory synapses and can flexibly modulate activity and plasticity of excitatory synapses. Here, we summarize recent experimental and theoretical research on the developmental emergence of this synaptic organization and its impact on neural computations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Faranak Vahid-Ansari ◽  
Paul R. Albert

Serotonin is a key neurotransmitter that is implicated in a wide variety of behavioral and cognitive phenotypes. Originating in the raphe nuclei, 5-HT neurons project widely to innervate many brain regions implicated in the functions. During the development of the brain, as serotonin axons project and innervate brain regions, there is evidence that 5-HT plays key roles in wiring the developing brain, both by modulating 5-HT innervation and by influencing synaptic organization within corticolimbic structures. These actions are mediated by 14 different 5-HT receptors, with region- and cell-specific patterns of expression. More recently, the role of the 5-HT system in synaptic re-organization during adulthood has been suggested. The 5-HT neurons have the unusual capacity to regrow and reinnervate brain regions following insults such as brain injury, chronic stress, or altered development that result in disconnection of the 5-HT system and often cause depression, anxiety, and cognitive impairment. Chronic treatment with antidepressants that amplify 5-HT action, such as selective serotonin reuptake inhibitors (SSRIs), appears to accelerate the rewiring of the 5-HT system by mechanisms that may be critical to the behavioral and cognitive improvements induced in these models. In this review, we survey the possible 5-HT receptor mechanisms that could mediate 5-HT rewiring and assess the evidence that 5-HT-mediated brain rewiring is impacting recovery from mental illness. By amplifying 5-HT-induced rewiring processes using SSRIs and selective 5-HT agonists, more rapid and effective treatments for injury-induced mental illness or cognitive impairment may be achieved.


2021 ◽  
Vol 14 ◽  
Author(s):  
Marie Pronot ◽  
Félicie Kieffer ◽  
Anne-Sophie Gay ◽  
Delphine Debayle ◽  
Raphaël Forquet ◽  
...  

Synapses are highly specialized structures that interconnect neurons to form functional networks dedicated to neuronal communication. During brain development, synapses undergo activity-dependent rearrangements leading to both structural and functional changes. Many molecular processes are involved in this regulation, including post-translational modifications by the Small Ubiquitin-like MOdifier SUMO. To get a wider view of the panel of endogenous synaptic SUMO-modified proteins in the mammalian brain, we combined subcellular fractionation of rat brains at the post-natal day 14 with denaturing immunoprecipitation using SUMO2/3 antibodies and tandem mass spectrometry analysis. Our screening identified 803 candidate SUMO2/3 targets, which represents about 18% of the synaptic proteome. Our dataset includes neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins as well as vesicular trafficking and cytoskeleton-associated proteins, defining SUMO2/3 as a central regulator of the synaptic organization and function.


2021 ◽  
Author(s):  
Yoav Printz ◽  
Pritish Patil ◽  
Mathias Mahn ◽  
Asaf Benjamin ◽  
Anna Litvin ◽  
...  

The medial prefrontal cortex (mPFC) mediates a variety of complex cognitive functions via its vast and diverse connections with cortical and subcortical structures. Understanding the patterns of synaptic connectivity that comprise the mPFC local network is crucial for deciphering how this circuit processes information and relays it to downstream structures. To elucidate the synaptic organization of the mPFC, we developed a high-throughput optogenetic method for mapping large-scale functional synaptic connectivity. We show that mPFC neurons that project to the basolateral amygdala display unique spatial patterns of local-circuit synaptic connectivity within the mPFC, which distinguish them from the general mPFC cell population. Moreover, the intrinsic properties of the postsynaptic mPFC cell and anatomical position of both cells jointly account for ~7.5% of the variation in probability of connection between mPFC neurons, with anatomical distance and laminar position explaining most of this fraction in variation. Our findings demonstrate a functional segregation of mPFC excitatory neuron subnetworks, and reveal the factors determining connectivity in the mPFC.


2021 ◽  
Author(s):  
Nikolai M. Chapochnikov ◽  
Cengiz Pehlevan ◽  
Dmitri B. Chklovskii

AbstractOne major question in neuroscience is how to relate connectomes to neural activity, circuit function, and learning. We offer an answer in the peripheral olfactory circuit of the Drosophila larva, composed of olfactory receptor neurons (ORNs) connected through feedback loops with interconnected inhibitory local neurons (LNs). We combine structural and activity data and, using a holistic normative framework based on similarity-matching, we propose a biologically plausible mechanistic model of the circuit. Our model predicts the ORN → LN synaptic weights found in the connectome and demonstrate that they reflect correlations in ORN activity patterns. Additionally, our model explains the relation between ORN → LN and LN – LN synaptic weight and the arising of different LN types. This global synaptic organization can autonomously arise through Hebbian plasticity, and thus allows the circuit to adapt to different environments in an unsupervised manner. Functionally, we propose LNs extract redundant input correlations and dampen them in ORNs, thus partially whitening and normalizing the stimulus representations in ORNs. Our work proposes a comprehensive framework to combine structure, activity, function, and learning, and uncovers a general and potent circuit motif that can learn and extract significant input features and render stimulus representations more efficient.SignificanceThe brain represents information with patterns of neural activity. At the periphery, due to the properties of the external world and of encoding neurons, these patterns contain correlations, which are detrimental for stimulus discrimination. We study the peripheral olfactory neural circuit of the Drosophila larva, that preprocesses neural representations before relaying them to higher brain areas. A comprehensive understanding of this preprocessing is, however, lacking. Here, we propose a mechanistic and normative framework describing the function of the circuit and predict the circuit’s synaptic organization based on the circuit’s input neural activity. We show how the circuit can autonomously adapt to different environments, extracts stimulus features, and decorrelate and normalize input representations, which facilitates odor discrimination downstream.


2021 ◽  
Author(s):  
Arpiar Saunders ◽  
Kee Wui Huang ◽  
Cassandra Vondrak ◽  
Christina Hughes ◽  
Karina Smolyar ◽  
...  

Brain function depends on forming and maintaining connections between neurons of specific types, ensuring neural function while allowing the plasticity necessary for cellular and behavioral dynamics. However, systematic descriptions of how brain cell types organize into synaptic networks and which molecules instruct these relationships are not readily available. Here, we introduce SBARRO (Synaptic Barcode Analysis by Retrograde Rabies ReadOut), a method that uses single-cell RNA sequencing to reveal directional, monosynaptic relationships based on the paths of a barcoded rabies virus from its "starter" postsynaptic cell to that cell's presynaptic partners1. Thousands of these partner relationships can be ascertained in a single experiment, alongside genome-wide RNA profiles - and thus cell identities and molecular states - of each host cell. We used SBARRO to describe synaptic networks formed by diverse mouse brain cell types in vitro, leveraging a system similar to those used to identify synaptogenic molecules. We found that the molecular identity (cell type/subtype) of the starter cell predicted the number and types of cells that had synapsed onto it. Rabies transmission tended to occur into cells with RNA-expression signatures related to developmental maturation and synaptic transmission. The estimated size of a cell's presynaptic network, relative to that of other cells of the same type, associated with increased expression of Arpp21 and Cdh13. By tracking individual virions and their clonal progeny as they travel among host cells, single-cell, single-virion genomic technologies offer new opportunities to map the synaptic organization of neural circuits in health and disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diego Zelada ◽  
Francisco J. Barrantes ◽  
Juan Pablo Henríquez

AbstractLithium chloride has been widely used as a therapeutic mood stabilizer. Although cumulative evidence suggests that lithium plays modulatory effects on postsynaptic receptors, the underlying mechanism by which lithium regulates synaptic transmission has not been fully elucidated. In this work, by using the advantageous neuromuscular synapse, we evaluated the effect of lithium on the stability of postsynaptic nicotinic acetylcholine receptors (nAChRs) in vivo. We found that in normally innervated neuromuscular synapses, lithium chloride significantly decreased the turnover of nAChRs by reducing their internalization. A similar response was observed in CHO-K1/A5 cells expressing the adult muscle-type nAChRs. Strikingly, in denervated neuromuscular synapses, lithium led to enhanced nAChR turnover and density by increasing the incorporation of new nAChRs. Lithium also potentiated the formation of unstable nAChR clusters in non-synaptic regions of denervated muscle fibres. We found that denervation-dependent re-expression of the foetal nAChR γ-subunit was not altered by lithium. However, while denervation inhibits the distribution of β-catenin within endplates, lithium-treated fibres retain β-catenin staining in specific foci of the synaptic region. Collectively, our data reveal that lithium treatment differentially affects the stability of postsynaptic receptors in normal and denervated neuromuscular synapses in vivo, thus providing novel insights into the regulatory effects of lithium on synaptic organization and extending its potential therapeutic use in conditions affecting the peripheral nervous system.


2021 ◽  
Author(s):  
Lisa E.L. Romano ◽  
Wen Yih Aw ◽  
Kathryn M. Hixson ◽  
Tatiana V. Novoselova ◽  
Tammy M. Havener ◽  
...  

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in SACS, which manifest as a childhood-onset cerebellar ataxia. Cellular ARSACS phenotypes include mitochondrial dysfunction, intermediate filament (IF) disorganization, and loss of Purkinje neurons. It is unclear how the loss of SACS causes these deficits, or why they manifest as cerebellar ataxia. We employed a multi-omics approach to characterize molecular and cellular deficiencies in SACS knockout (KO) cells. We identified alterations in microtubule structure and dynamics, protein trafficking, and mislocalization of synaptic and focal adhesion proteins. Targeting PTEN, a negative regulator of focal adhesions, rescued several cellular phenotypes in SACS KO cells. We found sacsin interacts with proteins implicated in vesicle transport, including HSP proteins, and interactions between structural and cell adhesion proteins were diminished in SACS KO cells. In all, this study suggests that trafficking and localization of synaptic adhesion proteins is a causal molecular deficiency in ARSACS.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jan H. Kirchner ◽  
Julijana Gjorgjieva

AbstractSynaptic inputs on cortical dendrites are organized with remarkable subcellular precision at the micron level. This organization emerges during early postnatal development through patterned spontaneous activity and manifests both locally where nearby synapses are significantly correlated, and globally with distance to the soma. We propose a biophysically motivated synaptic plasticity model to dissect the mechanistic origins of this organization during development and elucidate synaptic clustering of different stimulus features in the adult. Our model captures local clustering of orientation in ferret and receptive field overlap in mouse visual cortex based on the receptive field diameter and the cortical magnification of visual space. Including action potential back-propagation explains branch clustering heterogeneity in the ferret and produces a global retinotopy gradient from soma to dendrite in the mouse. Therefore, by combining activity-dependent synaptic competition and species-specific receptive fields, our framework explains different aspects of synaptic organization regarding stimulus features and spatial scales.


Sign in / Sign up

Export Citation Format

Share Document