visual information
Recently Published Documents


TOTAL DOCUMENTS

6060
(FIVE YEARS 1731)

H-INDEX

113
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Meghan Doherty

The book traces major concepts including: the creation of the visual effects of accuracy through careful action and training; the development of visual judgment and connoisseurship; the role of a network in the production of knowledge; balancing readers’ expectations with representational conventions; and the effects of acts of collecting on the creation and circulation of knowledge. On the one hand, this study uncovers that approaches to knowledge production were different in the seventeenth century, as compared with in the twenty-first century. On the other, it reveals how the early modern struggle to sort through an overwhelming quantity of visual information - brought on by major changes in image production and circulation - resonates with our own.


2022 ◽  
Vol 27 (3) ◽  
pp. 619-629
Author(s):  
Wenhan Wu ◽  
Maoyin Chen ◽  
Jinghai Li ◽  
Binglu Liu ◽  
Xiaolu Wang ◽  
...  

2022 ◽  
Vol 3 ◽  
Author(s):  
Chisa Aoyama ◽  
Ryoma Goya ◽  
Naofumi Suematsu ◽  
Koji Kadota ◽  
Yuji Yamamoto ◽  
...  

In a table tennis rally, players perform interceptive actions on a moving ball continuously in a short time, such that the acquisition process of visual information is an important determinant of the performance of the action. However, because it is technically hard to measure gaze movement in a real game, little is known about how gaze behavior is conducted during the continuous visuomotor actions and contributes to the performance. To examine these points, we constructed a novel psychophysical experiment model enabling a continuous visuomotor task without spatial movement of any body parts, including the arm and head, and recorded the movement of the gaze and effector simultaneously at high spatiotemporal resolution. In the task, Gabor patches (target) moved one after another at a constant speed from right to left at random vertical positions on an LC display. Participants hit the target with a cursor moving vertically on the left side of the display by controlling their prehensile force on a force sensor. Participants hit the target with the cursor using a rapid-approaching movement (rapid cursor approach, RCA). Their gaze also showed rapid saccadic approaching movement (saccadic eye approach, SEA), reaching the predicted arrival point of the target earlier than the cursor. The RCA reached in or near the Hit zone in the successful (Hit) trial, but ended up away from it in the unsuccessful (Miss) trial, suggesting the spatial accuracy of the RCA determines the task's success. The SEA in the Hit trial ended nearer the target than the Miss trial. The spatial accuracy of the RCA diminished when the target disappeared 100 ms just after the end of the SEA, suggesting that visual information acquired after the saccade acted as feedback information to correct the cursor movement online for the cursor to reach the target. There was a target speed condition that the target disappearance did not compromise RCA's spatial accuracy, implying the possible RCA correction based on the post-saccadic gaze location information. These experiments clarified that gaze behavior conducted during fast continuous visuomotor actions enables online correction of the ongoing interceptive movement of an effector, improving visuomotor performance.


2022 ◽  
Vol 12 ◽  
Author(s):  
Chunshan Wang ◽  
Ji Zhou ◽  
Yan Zhang ◽  
Huarui Wu ◽  
Chunjiang Zhao ◽  
...  

The disease image recognition models based on deep learning have achieved relative success under limited and restricted conditions, but such models are generally subjected to the shortcoming of weak robustness. The model accuracy would decrease obviously when recognizing disease images with complex backgrounds under field conditions. Moreover, most of the models based on deep learning only involve characterization learning on visual information in the image form, while the expression of other modal information rather than the image form is often ignored. The present study targeted the main invasive diseases in tomato and cucumber as the research object. Firstly, in response to the problem of weak robustness, a feature decomposition and recombination method was proposed to allow the model to learn image features at different granularities so as to accurately recognize different test images. Secondly, by extracting the disease feature words from the disease text description information composed of continuous vectors and recombining them into the disease graph structure text, the graph convolutional neural network (GCN) was then applied for feature learning. Finally, a vegetable disease recognition model based on the fusion of images and graph structure text was constructed. The results show that the recognition accuracy, precision, sensitivity, and specificity of the proposed model were 97.62, 92.81, 98.54, and 93.57%, respectively. This study improved the model robustness to a certain extent, and provides ideas and references for the research on the fusion method of image information and graph structure information in disease recognition.


2022 ◽  
Vol 15 ◽  
Author(s):  
Diana Bzdúšková ◽  
Martin Marko ◽  
Zuzana Hirjaková ◽  
Jana Kimijanová ◽  
František Hlavačka ◽  
...  

Virtual reality (VR) enables individuals to be exposed to naturalistic environments in laboratory settings, offering new possibilities for research in human neuroscience and treatment of mental disorders. We used VR to study psychological, autonomic and postural reactions to heights in individuals with varying intensity of fear of heights. Study participants (N = 42) were immersed in a VR of an unprotected open-air elevator platform in an urban area, while standing on an unstable ground. Virtual elevation of the platform (up to 40 m above the ground level) elicited robust and reliable psychophysiological activation including increased distress, heart rate, and electrodermal activity, which was higher in individuals suffering from fear of heights. In these individuals, compared with individuals with low fear of heights, the VR height exposure resulted in higher velocity of postural movements as well as decreased low-frequency (<0.5 Hz) and increased high-frequency (>1 Hz) body sway oscillations. This indicates that individuals with strong fear of heights react to heights with maladaptive rigidity of posture due to increased weight of visual input for balance control, while the visual information is less reliable at heights. Our findings show that exposure to height in a naturalistic VR environment elicits a complex reaction involving correlated changes of the emotional state, autonomic activity, and postural balance, which are exaggerated in individuals with fear of heights.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Ying Zhuo ◽  
Lan Yan ◽  
Wenbo Zheng ◽  
Yutian Zhang ◽  
Chao Gou

Autonomous driving has become a prevalent research topic in recent years, arousing the attention of many academic universities and commercial companies. As human drivers rely on visual information to discern road conditions and make driving decisions, autonomous driving calls for vision systems such as vehicle detection models. These vision models require a large amount of labeled data while collecting and annotating the real traffic data are time-consuming and costly. Therefore, we present a novel vehicle detection framework based on the parallel vision to tackle the above issue, using the specially designed virtual data to help train the vehicle detection model. We also propose a method to construct large-scale artificial scenes and generate the virtual data for the vision-based autonomous driving schemes. Experimental results verify the effectiveness of our proposed framework, demonstrating that the combination of virtual and real data has better performance for training the vehicle detection model than the only use of real data.


2022 ◽  
Author(s):  
Karola Schlegelmilch ◽  
Annie E. Wertz

An infant's everyday visual environment is composed of a complex array of entities, some of which are well integrated into their surroundings. Although infants are already sensitive to some categories in their first year of life, it is not clear which visual information supports their detection of meaningful elements within naturalistic scenes. Here we investigated the impact of image characteristics on 8-month-olds' search performance using a gaze contingent eye-tracking search task. Infants had to detect a target patch on a background image. The stimuli consisted of images taken from three categories: vegetation, non-living natural elements (e.g., stones), and manmade artifacts, for which we also assessed target background differences in lower- and higher-level visual properties. Our results showed that larger target-background differences in the statistical properties scaling invariance and entropy, and also stimulus backgrounds including low pictorial depth, predicted better detection performance. Furthermore, category membership only affected search performance if supported by luminance contrast. Data from an adult comparison group also indicated that infants' search performance relied more on lower-order visual properties than adults. Taken together, these results suggest that infants use a combination of property- and category-related information to parse complex visual stimuli.


Author(s):  
Sunyoung Park ◽  
John T. Serences

Top-down spatial attention enhances cortical representations of behaviorally relevant visual information and increases the precision of perceptual reports. However, little is known about the relative precision of top-down attentional modulations in different visual areas, especially compared to the highly precise stimulus-driven responses that are observed in early visual cortex. For example, the precision of attentional modulations in early visual areas may be limited by the relatively coarse spatial selectivity and the anatomical connectivity of the areas in prefrontal cortex that generate and relay the top-down signals. Here, we used fMRI and human participants to assess the precision of bottom-up spatial representations evoked by high contrast stimuli across the visual hierarchy. Then, we examined the relative precision of top-down attentional modulations in the absence of spatially-specific bottom-up drive. While V1 showed the largest relative difference between the precision of top-down attentional modulations and the precision of bottom-up modulations, mid-level areas such as V4 showed relatively smaller differences between the precision of top-down and bottom-up modulations. Overall, this interaction between visual areas (e.g. V1 vs V4) and the relative precision of top-down and bottom-up modulations suggests that the precision of top-down attentional modulations is limited by the representational fidelity of areas that generate and relay top-down feedback signals.


Author(s):  
Sabrina Bouhassoun ◽  
Nicolas Poirel ◽  
Noah Hamlin ◽  
Gaelle E. Doucet

AbstractSelecting relevant visual information in complex scenes by processing either global information or local parts helps us act efficiently within our environment and achieve goals. A global advantage (faster global than local processing) and global interference (global processing interferes with local processing) comprise an evidentiary global precedence phenomenon in early adulthood. However, the impact of healthy aging on this phenomenon remains unclear. As such, we collected behavioral data during a visual search task, including three-levels hierarchical stimuli (i.e., global, intermediate, and local levels) with several hierarchical distractors, in 50 healthy adults (26 younger (mean age: 26 years) and 24 older (mean age: 62 years)). Results revealed that processing information presented at the global and intermediate levels was independent of age. Conversely, older adults were slower for local processing compared to the younger adults, suggesting lower efficiency to deal with visual distractors during detail-oriented visual search. Although healthy older adults continued exhibiting a global precedence phenomenon, they were disproportionately less efficient during local aspects of information processing, especially when multiple visual information was displayed. Our results could have important implications for many life situations by suggesting that visual information processing is impacted by healthy aging, even with similar visual stimuli objectively presented.


Sign in / Sign up

Export Citation Format

Share Document