Three-dimensional transient Navier-Stokes solvers in cylindrical coordinate system based on a spectral collocation method using explicit treatment of the pressure

2011 ◽  
Vol 66 (3) ◽  
pp. 284-298 ◽  
Author(s):  
Ben-Wen Li ◽  
Yu-Rong Zhao ◽  
Yang Yu ◽  
Zhong-Dong Qian
Author(s):  
Phumlani G. Dlamini ◽  
Vusi M. Magagula

AbstractIn this paper, we introduce the multi-variate spectral quasi-linearization method which is an extension of the previously reported bivariate spectral quasi-linearization method. The method is a combination of quasi-linearization techniques and the spectral collocation method to solve three-dimensional partial differential equations. We test its applicability on the (2 + 1) dimensional Burgers’ equations. We apply the spectral collocation method to discretize both space variables as well as the time variable. This results in high accuracy in both space and time. Numerical results are compared with known exact solutions as well as results from other papers to confirm the accuracy and efficiency of the method. The results show that the method produces highly accurate solutions and is very efficient for (2 + 1) dimensional PDEs. The efficiency is due to the fact that only few grid points are required to archive high accuracy. The results are portrayed in tables and graphs.


2016 ◽  
pp. 90-92
Author(s):  
A. G. Obukhov ◽  
R. E. Volkov

It is proved that complex flows of the viscous compressible heat-conducting gas, arising during heating the vertical field, have a pronounced axial symmetry. Therefore, for the numerical solution of the full Navier-Stokes equations for description of such gas flows it are advisable to use a cylindrical coordinate system. This paper describes the transformation of the first projection of the equation of motion of the full Navier-Stokes equations system. The result of the transformation is a record of the first projection of the equation of a continuous medium motion in the cylindrical coordinate system.


Sign in / Sign up

Export Citation Format

Share Document