scholarly journals Small weight codewords in the LDPC codes arising from linear representations of geometries

2009 ◽  
Vol 17 (1) ◽  
pp. 1-24 ◽  
Author(s):  
V. Pepe ◽  
L. Storme ◽  
G. Van de Voorde

2006 ◽  
Vol 42 (1) ◽  
pp. 73-92 ◽  
Author(s):  
Jon-Lark Kim ◽  
Keith E. Mellinger ◽  
Leo Storme


2010 ◽  
Vol 4 (3) ◽  
pp. 405-417 ◽  
Author(s):  
Peter Vandendriessche ◽  


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Daniele Bartoli ◽  
Lins Denaux

<p style='text-indent:20px;'>Over the past few years, the codes <inline-formula><tex-math id="M1">\begin{document}$ {\mathcal{C}}_{n-1}(n,q) $\end{document}</tex-math></inline-formula> arising from the incidence of points and hyperplanes in the projective space <inline-formula><tex-math id="M2">\begin{document}$ {\rm{PG}}(n,q) $\end{document}</tex-math></inline-formula> attracted a lot of attention. In particular, small weight codewords of <inline-formula><tex-math id="M3">\begin{document}$ {\mathcal{C}}_{n-1}(n,q) $\end{document}</tex-math></inline-formula> are a topic of investigation. The main result of this work states that, if <inline-formula><tex-math id="M4">\begin{document}$ q $\end{document}</tex-math></inline-formula> is large enough and not prime, a codeword having weight smaller than roughly <inline-formula><tex-math id="M5">\begin{document}$ \frac{1}{2^{n-2}}q^{n-1}\sqrt{q} $\end{document}</tex-math></inline-formula> can be written as a linear combination of a few hyperplanes. Consequently, we use this result to provide a graph-theoretical sufficient condition for these codewords of small weight to be minimal.</p>



2016 ◽  
Vol 73 ◽  
pp. 27-45 ◽  
Author(s):  
Chiara Marcolla ◽  
Marco Pellegrini ◽  
Massimiliano Sala


2009 ◽  
Vol 116 (4) ◽  
pp. 996-1001 ◽  
Author(s):  
Michel Lavrauw ◽  
Leo Storme ◽  
Peter Sziklai ◽  
Geertrui Van de Voorde




2020 ◽  
Vol 173 ◽  
pp. 105238
Author(s):  
Peter Sin ◽  
Julien Sorci ◽  
Qing Xiang






Sign in / Sign up

Export Citation Format

Share Document