scholarly journals Character tables and the problem of existence of finite projective planes

2018 ◽  
Vol 26 (11) ◽  
pp. 540-546
Author(s):  
Máté Matolcsi ◽  
Mihály Weiner



1977 ◽  
Vol 19 (1) ◽  
pp. 67-76 ◽  
Author(s):  
D. McCarthy ◽  
S.A. Vanstone


CAUCHY ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 131
Author(s):  
Vira Hari Krisnawati ◽  
Corina Karim

<p class="abstract"><span lang="IN">In combinatorial mathematics, a Steiner system is a type of block design. Specifically, a Steiner system <em>S</em>(<em>t</em>, <em>k</em>, <em>v</em>) is a set of <em>v</em> points and <em>k</em> blocks which satisfy that every <em>t</em>-subset of <em>v</em>-set of points appear in the unique block. It is well-known that a finite projective plane is one examples of Steiner system with <em>t</em> = 2, which consists of a set of points and lines together with an incidence relation between them and order 2 is the smallest order.</span></p><p class="abstract"><span lang="IN">In this paper, we observe some properties from construction of finite projective planes of order 2 and 3. Also, we analyse the intersection between two projective planes by using some characteristics of the construction and orbit of projective planes over some representative cosets from automorphism group in the appropriate symmetric group.</span></p>



2005 ◽  
Vol 26 (5) ◽  
pp. 1267-1270 ◽  
Author(s):  
Metod Saniga ◽  
Michel Planat




Sign in / Sign up

Export Citation Format

Share Document