symmetric group
Recently Published Documents


TOTAL DOCUMENTS

1344
(FIVE YEARS 158)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Vol 345 (4) ◽  
pp. 112776
Author(s):  
Francesco Fumagalli ◽  
Martino Garonzi ◽  
Attila Maróti
Keyword(s):  

2021 ◽  
Vol 2090 (1) ◽  
pp. 012096
Author(s):  
Ibrahim Nonkané ◽  
Léonard Todjihounde

Abstract In this note, we study the action of the rational quantum Calogero-Moser system on polynomials rings. This a continuation of our paper [Ibrahim Nonkan 2021 J. Phys.: Conf. Ser. 1730 012129] in which we deal with the polynomial representation of the ring of invariant differential operators. Using the higher Specht polynomials we give a detailed description of the actions of the Weyl algebra associated with the ring of the symmetric polynomial C[x 1,..., xn]Sn on the polynomial ring C[x 1,..., xn ]. In fact, we show that its irreducible submodules over the ring of differential operators invariant under the symmetric group are its submodules generated by higher Specht polynomials over the ring of the symmetric polynomials. We end up studying the polynomial representation of the ring of differential operators invariant under the actions of products of symmetric groups by giving the generators of its simple components, thus we give a differential structure to the higher Specht polynomials.


Author(s):  
Mun See Chang ◽  
Colva M. Roney-Dougal

AbstractThe normaliser problem has as input two subgroups H and K of the symmetric group $$\mathrm {S}_n$$ S n , and asks for a generating set for $$N_K(H)$$ N K ( H ) : it is not known to have a subexponential time solution. It is proved in Roney-Dougal and Siccha (Bull Lond Math Soc 52(2):358–366, 2020) that if H is primitive, then the normaliser problem can be solved in quasipolynomial time. We show that for all subgroups H and K of $$\mathrm {S}_n$$ S n , in quasipolynomial time, we can decide whether $$N_{\mathrm {S}_n}(H)$$ N S n ( H ) is primitive, and if so, compute $$N_K(H)$$ N K ( H ) . Hence we reduce the question of whether one can solve the normaliser problem in quasipolynomial time to the case where the normaliser in $$\mathrm {S}_n$$ S n is known not to be primitive.


2021 ◽  
Author(s):  
Sujash Naskar ◽  
Tingting Zhang ◽  
Gerhard Hancke ◽  
Mikael Gidlund

Author(s):  
Nazan Akdoğan ◽  
Şehmus Fındık

Let [Formula: see text] denote the variety generated by infinite-dimensional Grassmann algebras, i.e. the collection of all unitary associative algebras satisfying the identity [Formula: see text], where [Formula: see text]. Consider the free algebra [Formula: see text] in [Formula: see text] generated by [Formula: see text]. We call a polynomial [Formula: see text] symmetric if it is preserved under the action of the symmetric group [Formula: see text] on generators, i.e. [Formula: see text] for each permutation [Formula: see text]. The set of symmetric polynomials forms the subalgebra [Formula: see text] of invariants of the group [Formula: see text] in [Formula: see text]. The commutator ideal [Formula: see text] of the algebra [Formula: see text] has a natural left [Formula: see text]-module structure, and [Formula: see text] is a left [Formula: see text]-module. We give a finite free generating set for the [Formula: see text]-module [Formula: see text].


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1842
Author(s):  
Mohamed Osman ◽  
Khaled El-Wazan

Reversible arithmetic and logic unit (ALU) is a necessary part of quantum computing. In this work, we present improved designs of reversible half and full addition and subtraction circuits. The proposed designs are based on a universal one type gate (G gate library). The G gate library can generate all possible permutations of the symmetric group. The presented designs are multi-function circuits that are capable of performing additional logical operations. We achieve a reduction in the quantum cost, gate count, number of constant inputs, and delay with zero garbage, compared to relevant results obtained by others. The experimental results using IBM Quantum Experience (IBM Q) illustrate the success probability of the proposed designs.


2021 ◽  
Vol 21 (4) ◽  
pp. 451-461
Author(s):  
Massimo Giulietti ◽  
Motoko Kawakita ◽  
Stefano Lia ◽  
Maria Montanucci

Abstract In 1895 Wiman introduced the Riemann surface 𝒲 of genus 6 over the complex field ℂ defined by the equation X 6+Y 6+ℨ 6+(X 2+Y 2+ℨ 2)(X 4+Y 4+ℨ 4)−12X 2 Y 2 ℨ 2 = 0, and showed that its full automorphism group is isomorphic to the symmetric group S 5. We show that this holds also over every algebraically closed field 𝕂 of characteristic p ≥ 7. For p = 2, 3 the above polynomial is reducible over 𝕂, and for p = 5 the curve 𝒲 is rational and Aut(𝒲) ≅ PGL(2,𝕂). We also show that Wiman’s 𝔽192 -maximal sextic 𝒲 is not Galois covered by the Hermitian curve H19 over the finite field 𝔽192 .


2021 ◽  
Vol 390 ◽  
pp. 107943
Author(s):  
Rosa Orellana ◽  
Mike Zabrocki

Sign in / Sign up

Export Citation Format

Share Document