scholarly journals Sharpness and non-compactness of embeddings of Bessel-potential-type spaces

2007 ◽  
Vol 280 (9-10) ◽  
pp. 1083-1093 ◽  
Author(s):  
Amiran Gogatishvili ◽  
Júlio Severino Neves ◽  
Bohumír Opic
2009 ◽  
Vol 32 (3) ◽  
pp. 201-228 ◽  
Author(s):  
Amiran Gogatishvili ◽  
Júlio S. Neves ◽  
Bohumír Opic

2008 ◽  
Vol 262 (3) ◽  
pp. 645-682 ◽  
Author(s):  
Amiran Gogatishvili ◽  
Júlio S. Neves ◽  
Bohumír Opic

2004 ◽  
Vol 134 (6) ◽  
pp. 1127-1147 ◽  
Author(s):  
Amiran Gogatishvili ◽  
Bohumír Opic ◽  
Júlio S. Neves

We establish sharpness of embedding theorems for Bessel-potential spaces modelled upon Lorentz–Karamata (LK) spaces and we prove the non-compactness of such embeddings. Target spaces in our embeddings are LK spaces. As a consequence of our results, we get growth envelopes of Bessel-potential spaces modelled upon LK spaces.


2005 ◽  
Vol 49 ◽  
pp. 297-327 ◽  
Author(s):  
A. Gogatishvili ◽  
J. S. Neves ◽  
B. Opic

2019 ◽  
Vol 10 (4) ◽  
pp. 413-426
Author(s):  
Aïssata Adama ◽  
Justin Feuto ◽  
Ibrahim Fofana

AbstractWe establish a weighted inequality for fractional maximal and convolution type operators, between weak Lebesgue spaces and Wiener amalgam type spaces on {\mathbb{R}} endowed with a measure which needs not to be doubling.


Sign in / Sign up

Export Citation Format

Share Document