modulus of smoothness
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 48)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Purshottam Narain Agrawal ◽  
Jitendra Kumar Singh

<p style='text-indent:20px;'>The aim of this paper is to study some approximation properties of the Durrmeyer variant of <inline-formula><tex-math id="M2">\begin{document}$ \alpha $\end{document}</tex-math></inline-formula>-Baskakov operators <inline-formula><tex-math id="M3">\begin{document}$ M_{n,\alpha} $\end{document}</tex-math></inline-formula> proposed by Aral and Erbay [<xref ref-type="bibr" rid="b3">3</xref>]. We study the error in the approximation by these operators in terms of the Lipschitz type maximal function and the order of approximation for these operators by means of the Ditzian-Totik modulus of smoothness. The quantitative Voronovskaja and Gr<inline-formula><tex-math id="M4">\begin{document}$ \ddot{u} $\end{document}</tex-math></inline-formula>ss Voronovskaja type theorems are also established. Next, we modify these operators in order to preserve the test functions <inline-formula><tex-math id="M5">\begin{document}$ e_0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ e_2 $\end{document}</tex-math></inline-formula> and show that the modified operators give a better rate of convergence. Finally, we present some graphs to illustrate the convergence behaviour of the operators <inline-formula><tex-math id="M7">\begin{document}$ M_{n,\alpha} $\end{document}</tex-math></inline-formula> and show the comparison of its rate of approximation vis-a-vis the modified operators.</p>


2021 ◽  
Vol 13 (3) ◽  
pp. 750-763
Author(s):  
Z. Cakir ◽  
C. Aykol ◽  
V.S. Guliyev ◽  
A. Serbetci

In this paper we investigate the best approximation by trigonometric polynomials in the variable exponent weighted Morrey spaces ${\mathcal{M}}_{p(\cdot),\lambda(\cdot)}(I_{0},w)$, where $w$ is a weight function in the Muckenhoupt $A_{p(\cdot)}(I_{0})$ class. We get a characterization of $K$-functionals in terms of the modulus of smoothness in the spaces ${\mathcal{M}}_{p(\cdot),\lambda(\cdot)}(I_{0},w)$. Finally, we prove the direct and inverse theorems of approximation by trigonometric polynomials in the spaces ${\mathcal{\widetilde{M}}}_{p(\cdot),\lambda(\cdot)}(I_{0},w),$ the closure of the set of all trigonometric polynomials in ${\mathcal{M}}_{p(\cdot),\lambda(\cdot)}(I_{0},w)$.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1919
Author(s):  
Qing-Bo Cai ◽  
Reşat Aslan

This paper deals with several approximation properties for a new class of q-Bernstein polynomials based on new Bernstein basis functions with shape parameter λ on the symmetric interval [−1,1]. Firstly, we computed some moments and central moments. Then, we constructed a Korovkin-type convergence theorem, bounding the error in terms of the ordinary modulus of smoothness, providing estimates for Lipschitz-type functions. Finally, with the aid of Maple software, we present the comparison of the convergence of these newly constructed polynomials to the certain functions with some graphical illustrations and error estimation tables.


2021 ◽  
pp. 39
Author(s):  
V.V. Shalaev

In the paper, it is proved that$$1 - \frac{1}{2n} \leqslant \sup\limits_{\substack{f \in C\\f \ne const}} \frac{E_n(f)_C}{\omega_2(f; \pi/n)_C} \leqslant \inf\limits_{L_n \in Z_n(C)} \sup\limits_{\substack{f \in C\\f \ne const}} \frac{\| f - L_n(f) \|_C}{\omega_2 (f; \pi/n)_C} \leqslant 1$$where $\omega_2(f; t)_C$ is the modulus of smoothness of the function $f \in C$, $E_n(f)_C$ is the best approximation by trigonometric polynomials of the degree not greater than $n-1$ in uniform metric, $Z_n(C)$ is the set of linear bounded operators that map $C$ to the subspace of trigonometric polynomials of degree not greater than $n-1$.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lahsen Aharouch ◽  
Khursheed J. Ansari ◽  
M. Mursaleen

We give a Bézier variant of Baskakov-Durrmeyer-type hybrid operators in the present article. First, we obtain the rate of convergence by using Ditzian-Totik modulus of smoothness and also for a class of Lipschitz function. Then, weighted modulus of continuity is investigated too. We study the rate of point-wise convergence for the functions having a derivative of bounded variation. Furthermore, we establish the quantitative Voronovskaja-type formula in terms of Ditzian-Totik modulus of smoothness at the end.


2021 ◽  
Vol 73 (7) ◽  
pp. 964-978
Author(s):  
A. Testici

UDC 517.5 Let be a doubly connected domain bounded by two rectifiable Carleson curves. In this work, we use the higher modulus of smoothness in order to investigate the approximation properties of -Faber–Laurent rational functions in the subclass of weighted generalized grand Smirnov classes of analytic functions.


Sign in / Sign up

Export Citation Format

Share Document