Weighted estimates for integral operators on local BMO type spaces

2015 ◽  
Vol 288 (8-9) ◽  
pp. 905-916 ◽  
Author(s):  
Elida V. Ferreyra ◽  
Guillermo J. Flores
Author(s):  
Ferit Gürbüz ◽  
Shenghu Ding ◽  
Huili Han ◽  
Pinhong Long

AbstractIn this paper, applying the properties of variable exponent analysis and rough kernel, we study the mapping properties of rough singular integral operators. Then, we show the boundedness of rough Calderón–Zygmund type singular integral operator, rough Hardy–Littlewood maximal operator, as well as the corresponding commutators in variable exponent vanishing generalized Morrey spaces on bounded sets. In fact, the results above are generalizations of some known results on an operator basis.


1993 ◽  
Vol 34 (4) ◽  
pp. 755-766 ◽  
Author(s):  
V. D. Stepanov

2018 ◽  
Vol 61 (2) ◽  
pp. 413-436 ◽  
Author(s):  
Guoen Hu ◽  
Kangwei Li

AbstractIn this paper, some weighted vector-valued inequalities with multiple weights $A_{\vec P}$ (ℝmn)are established for a class of multilinear singular integral operators. The weighted estimates for the multi(sub)linear maximal operators which control the multilinear singular integral operators are also considered.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jianfeng Dong ◽  
Jizheng Huang ◽  
Heping Liu

LetL=-Δ+Vbe a Schrödinger operator onRn,n≥3, whereV≢0is a nonnegative potential belonging to the reverse Hölder classBn/2. The Hardy type spacesHLp, n/(n+δ) <p≤1,for someδ>0, are defined in terms of the maximal function with respect to the semigroup{e-tL}t>0. In this paper, we investigate the bounded properties of some singular integral operators related toL, such asLiγand∇L-1/2, on spacesHLp. We give the molecular characterization ofHLp, which is used to establish theHLp-boundedness of singular integrals.


2005 ◽  
Vol 12 (2) ◽  
pp. 309-320
Author(s):  
Lanzhe Liu

Abstract In this paper, we prove the boundedness for some multilinear operators generated by singular integral operators and Lipschitz functions on some Hardy and Herz type spaces.


2018 ◽  
Vol 30 (4) ◽  
pp. 997-1011 ◽  
Author(s):  
Hongliang Li ◽  
Qinxiu Sun ◽  
Xiao Yu

Abstract Given measurable functions ϕ, ψ on {\mathbb{R}^{+}} and a kernel function {k(x,y)\geq 0} satisfying the Oinarov condition, we study the Hardy operator Kf(x)=\psi(x)\int_{0}^{x}k(x,y)\phi(y)f(y)\,dy,\quad x>0, between Orlicz–Lorentz spaces {\Lambda_{X}^{G}(w)} , where f is a measurable function on {\mathbb{R}^{+}} . We obtain sufficient conditions of boundedness of {K:\Lambda_{u_{0}}^{G_{0}}(w_{0})\rightarrow\Lambda_{u_{1}}^{G_{1}}(w_{1})} and {K:\Lambda_{u_{0}}^{G_{0}}(w_{0})\rightarrow\Lambda_{u_{1}}^{G_{1},\infty}(w_{% 1})} . We also look into boundedness and compactness of {K:\Lambda_{u_{0}}^{p_{0}}(w_{0})\rightarrow\Lambda_{u_{1}}^{p_{1},q_{1}}(w_{1% })} between weighted Lorentz spaces. The function spaces considered here are quasi-Banach spaces rather than Banach spaces. Specializing the weights and the Orlicz functions, we restore the existing results as well as we achieve new results in the new and old settings.


Sign in / Sign up

Export Citation Format

Share Document