Enzymatic Synthesis of Chitin- and Chitosan-graft-Aliphatic Polyesters

2004 ◽  
Vol 25 (20) ◽  
pp. 1776-1780 ◽  
Author(s):  
Masayori Fujioka ◽  
Hideyuki Okada ◽  
Yukihiko Kusaka ◽  
Satoko Nishiyama ◽  
Hiromichi Noguchi ◽  
...  
2014 ◽  
Vol 215 (22) ◽  
pp. 2185-2197 ◽  
Author(s):  
Yi Jiang ◽  
Gert O. R. Alberda van Ekenstein ◽  
Albert J. J. Woortman ◽  
Katja Loos

Synlett ◽  
1991 ◽  
Vol 1991 (04) ◽  
pp. 310-312
Author(s):  
Patrizia Ferraboschi ◽  
Daria Brembilla ◽  
Paride Grisenti ◽  
Enzo Santaniello

2018 ◽  
Author(s):  
Andrea Pérez-Villa ◽  
Thomas Georgelin ◽  
Jean-François Lambert ◽  
Marie-Christine Maurel ◽  
François Guyot ◽  
...  

Understanding the mechanism of spontaneous formation of ribonucleotides under realistic prebiotic conditions is a key open issue of origins-of-life research. In cells, <i>de novo</i> and salvage nucleotide enzymatic synthesis combines 5-phospho-α -D-ribose-1-diphosphate ( α-PRPP) and nucleobases. Interestingly, these reactants are also known as prebiotically plausible compounds. Combining ab initio simulations with mass spectrometry experiments, we compellingly demonstrate that nucleobases and α -PRPP spontaneously combine, through the same facile mechanism, forming both purine and pyrimidine ribonucleotides, under mild hydrothermal conditions. Surprisingly, this mechanism is very similar to the biological one, and yields ribonucleotides with the same anomeric carbon chirality as in biological systems. These results suggest that natural selection might have optimized – through enzymes – a pre-existing ribonucleotide formation mechanism, carrying it forward to modern life forms.


2017 ◽  
Author(s):  
Andrea Pérez-Villa ◽  
Thomas Georgelin ◽  
Jean-François Lambert ◽  
Marie-Christine Maurel ◽  
François Guyot ◽  
...  

Understanding the mechanism of spontaneous formation of ribonucleotides under realistic prebiotic conditions is a key open issue of origins-of-life research. In cells, <i>de novo</i> and salvage nucleotide enzymatic synthesis combines 5-phospho-α -D-ribose-1-diphosphate ( α-PRPP) and nucleobases. Interestingly, these reactants are also known as prebiotically plausible compounds. Combining ab initio simulations with mass spectrometry experiments, we compellingly demonstrate that nucleobases and α -PRPP spontaneously combine, through the same facile mechanism, forming both purine and pyrimidine ribonucleotides, under mild hydrothermal conditions. Surprisingly, this mechanism is very similar to the biological one, and yields ribonucleotides with the same anomeric carbon chirality as in biological systems. These results suggest that natural selection might have optimized – through enzymes – a pre-existing ribonucleotide formation mechanism, carrying it forward to modern life forms.


Author(s):  
Bong‐Seop Lee ◽  
Michel Vert ◽  
Eggehard Holler

Author(s):  
Ann‐Christine Albertsson ◽  
Indra K. Varma
Keyword(s):  

2014 ◽  
Vol 32 (8) ◽  
pp. 1405-1410
Author(s):  
Lisheng XU ◽  
Junzhong LIU ◽  
Zhiyuan WANG ◽  
Hongjuan ZHANG ◽  
Wei LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document