An approximation for the waiting time distribution in single server queues

1980 ◽  
Vol 27 (2) ◽  
pp. 223-230
Author(s):  
Irwin Greenberg
1991 ◽  
Vol 28 (02) ◽  
pp. 433-445 ◽  
Author(s):  
Masakiyo Miyazawa ◽  
Genji Yamazaki

The attained waiting time of customers in service of the G/G/1 queue is compared for various work-conserving service disciplines. It is proved that the attained waiting time distribution is minimized (maximized) in convex order when the discipline is FCFS (PR-LCFS). We apply the result to characterize finiteness of moments of the attained waiting time in the GI/GI/1 queue with an arbitrary work-conserving service discipline. In this discussion, some interesting relationships are obtained for a PR-LCFS queue.


1991 ◽  
Vol 28 (2) ◽  
pp. 433-445
Author(s):  
Masakiyo Miyazawa ◽  
Genji Yamazaki

The attained waiting time of customers in service of the G/G/1 queue is compared for various work-conserving service disciplines. It is proved that the attained waiting time distribution is minimized (maximized) in convex order when the discipline is FCFS (PR-LCFS). We apply the result to characterize finiteness of moments of the attained waiting time in the GI/GI/1 queue with an arbitrary work-conserving service discipline. In this discussion, some interesting relationships are obtained for a PR-LCFS queue.


1997 ◽  
Vol 34 (03) ◽  
pp. 773-784 ◽  
Author(s):  
Onno J. Boxma ◽  
Uri Yechiali

This paper considers a single-server queue with Poisson arrivals and multiple customer feedbacks. If the first service attempt of a newly arriving customer is not successful, he returns to the end of the queue for another service attempt, with a different service time distribution. He keeps trying in this manner (as an ‘old' customer) until his service is successful. The server operates according to the ‘gated vacation' strategy; when it returns from a vacation to find K (new and old) customers, it renders a single service attempt to each of them and takes another vacation, etc. We study the joint queue length process of new and old customers, as well as the waiting time distribution of customers. Some extensions are also discussed.


Author(s):  
J. Köllerström

Various elegant properties have been found for the waiting time distribution G for the queue GI/G/1 in statistical equilibrium, such as infinite divisibility ((1), p. 282) and that of having an exponential tail ((11), (2), p. 411, (1), p. 324). Here we derive another property which holds quite generally, provided the traffic intensity ρ < 1, and which is extremely simple, fitting in with the above results as well as yielding some useful properties in the form of upper and lower stochastic bounds for G which augment the bounds obtained by Kingman (5), (6), (8) and by Ross (10).


1988 ◽  
Vol 11 (3) ◽  
pp. 589-597
Author(s):  
A. Ghosal ◽  
S. Madan

This paper brings out relations among the moments of various orders of the waiting time of the1st customer and a randomly selected customer of an arrival group for bulk arrivals queueing models, and as well as moments of the waiting time (in queue) forM/G/1queueing system. A numerical study of these relations has been developed in order to find the(β1,β2)measures of waiting time distribution in a comutable form. On the basis of these measures one can look into the nature of waiting time distribution of bulk arrival queues and the single serverM/G/1queue.


1990 ◽  
Vol 22 (1) ◽  
pp. 230-240 ◽  
Author(s):  
Władysław Szczotka

An exponential approximation for the stationary waiting time distribution and the stationary queue size distribution for single-server queues in heavy traffic is given for a wide class of queues. This class contains for example not only queues for which the generic sequence, i.e. the sequence of service times and interarrival times, is stationary but also such queues for which the generic sequence is asymptotically stationary in some sense. The conditions ensuring the exponential approximation of the characteristics considered in heavy traffic are expressed in terms of the invariance principle for the stationary representation of the generic sequence and its first two moments.


1990 ◽  
Vol 22 (01) ◽  
pp. 230-240 ◽  
Author(s):  
Władysław Szczotka

An exponential approximation for the stationary waiting time distribution and the stationary queue size distribution for single-server queues in heavy traffic is given for a wide class of queues. This class contains for example not only queues for which the generic sequence, i.e. the sequence of service times and interarrival times, is stationary but also such queues for which the generic sequence is asymptotically stationary in some sense. The conditions ensuring the exponential approximation of the characteristics considered in heavy traffic are expressed in terms of the invariance principle for the stationary representation of the generic sequence and its first two moments.


1964 ◽  
Vol 4 (4) ◽  
pp. 489-505 ◽  
Author(s):  
D. J. Daley

SummaryThe paper considers the queueing system GI/G/1 with a type of customer impatience, namely, that the total queueing-time is uniformly limited. Using Lindiley's approach [10], an integral equation for the limiting waiting- time distribution is derived, and this is solved explicitly for M/G/1 using an expansion of the Pollaczek-Khintchine formula. It is also solved, in principle for Ej/G/l, and explicitly for Ej/Ek/l. A duality noted between GIA(x)/GB(x)/l and GIB(x)/GA(x)/l relates solutions for GI/Ek/l to Ek/G/l. Finally the equation for the busy period in GI/G/l is derived and related to the no-customer-loss distribution and dual distributions.


Sign in / Sign up

Export Citation Format

Share Document