Perturbation bounds for weighted polar decomposition in the weighted unitarily invariant norm

2008 ◽  
Vol 15 (8) ◽  
pp. 685-700 ◽  
Author(s):  
Hu Yang ◽  
Hanyu Li
Filomat ◽  
2016 ◽  
Vol 30 (12) ◽  
pp. 3171-3175 ◽  
Author(s):  
Lingsheng Meng ◽  
Bing Zheng

In this paper, the multiplicative perturbation bounds of the group inverse and related oblique projection under general unitarily invariant norm are presented by using the decompositions of B# - A# and BB# - AA#.


2021 ◽  
pp. 2150043
Author(s):  
Mostafa Hayajneh ◽  
Saja Hayajneh ◽  
Fuad Kittaneh

Let [Formula: see text] and [Formula: see text] be [Formula: see text] positive semi-definite matrices. It is shown that [Formula: see text] for every unitarily invariant norm. This gives an affirmative answer to a question of Bourin in a special case. It is also shown that [Formula: see text] for [Formula: see text] and for every unitarily invariant norm.


2016 ◽  
Vol 8 (2) ◽  
pp. 312-323
Author(s):  
Ali Taghavi ◽  
Haji Mohammad Nazari ◽  
Vahid Darvish

Abstract In this paper, we introduce the concept of operator AG-preinvex functions and prove some Hermite-Hadamard type inequalities for these functions. As application, we obtain some unitarily invariant norm inequalities for operators.


2020 ◽  
Vol 70 (2) ◽  
pp. 453-466
Author(s):  
A. Beiranvand ◽  
Amir Ghasem Ghazanfari

Abstract In this paper, we present numerous refinements of the Young inequality by the Kantorovich constant. We use these improved inequalities to establish corresponding operator inequalities on a Hilbert space and some new inequalities involving the Hilbert-Schmidt norm of matrices. We also give some refinements of the following Heron type inequality for unitarily invariant norm |||⋅||| and A, B, X ∈ Mn(ℂ): $$\begin{array}{} \begin{split} \displaystyle \Big|\Big|\Big|\frac{A^\nu XB^{1-\nu}+A^{1-\nu}XB^\nu}{2}\Big|\Big|\Big| \leq &(4r_0-1)|||A^{\frac{1}{2}}XB^{\frac{1}{2}}||| \\ &+2(1-2r_0)\Big|\Big|\Big|(1-\alpha)A^{\frac{1}{2}}XB^{\frac{1}{2}} +\alpha\Big(\frac{AX+XB}{2}\Big)\Big|\Big|\Big|, \end{split} \end{array}$$ where $\begin{array}{} \displaystyle \frac{1}{4}\leq \nu \leq \frac{3}{4}, \alpha \in [\frac{1}{2},\infty ) \end{array}$ and r0 = min{ν, 1 – ν}.


2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Pingping Zhang ◽  
Hu Yang ◽  
Hanyu Li

Some new perturbation bounds for both weighted unitary polar factors and generalized nonnegative polar factors of the weighted polar decompositions are presented without the restriction thatAand its perturbed matrixA˜have the same rank. These bounds improve the corresponding recent results.


2016 ◽  
Vol 27 (02) ◽  
pp. 1650008 ◽  
Author(s):  
Hideki Kosaki

Norm inequalities of the form [Formula: see text] with [Formula: see text] and [Formula: see text] are studied. Here, [Formula: see text] are operators with [Formula: see text] and [Formula: see text] is an arbitrary unitarily invariant norm. We show that the inequality holds true if and only if [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document