A 2.5D finite/infinite element approach for modelling visco‐elastic bodies subjected to moving loads

2001 ◽  
Vol 51 (11) ◽  
pp. 1317-1336 ◽  
Author(s):  
Yeong‐Bin Yang ◽  
Hsiao‐Hui Hung
2010 ◽  
Author(s):  
Y. B. Yang ◽  
H. H. Hung ◽  
J. C. Kao ◽  
Jane W. Z. Lu ◽  
Andrew Y. T. Leung ◽  
...  

2013 ◽  
Vol 21 (02) ◽  
pp. 1350006 ◽  
Author(s):  
TIMOTHY F. WALSH ◽  
ANDREA JONES ◽  
MANOJ BHARDWAJ ◽  
CLARK DOHRMANN ◽  
GARTH REESE ◽  
...  

Finite element analysis of transient acoustic phenomena on unbounded exterior domains is very common in engineering analysis. In these problems there is a common need to compute the acoustic pressure at points outside of the acoustic mesh, since meshing to points of interest is impractical in many scenarios. In aeroacoustic calculations, for example, the acoustic pressure may be required at tens or hundreds of meters from the structure. In these cases, a method is needed for post-processing the acoustic results to compute the response at far-field points. In this paper, we compare two methods for computing far-field acoustic pressures, one derived directly from the infinite element solution, and the other from the transient version of the Kirchhoff integral. We show that the infinite element approach alleviates the large storage requirements that are typical of Kirchhoff integral and related procedures, and also does not suffer from loss of accuracy that is an inherent part of computing numerical derivatives in the Kirchhoff integral. In order to further speed up and streamline the process of computing the acoustic response at points outside of the mesh, we also address the nonlinear iterative procedure needed for locating parametric coordinates within the host infinite element of far-field points, the parallelization of the overall process, linear solver requirements, and system stability considerations.


Sign in / Sign up

Export Citation Format

Share Document