high order
Recently Published Documents


TOTAL DOCUMENTS

22694
(FIVE YEARS 7811)

H-INDEX

171
(FIVE YEARS 46)

2022 ◽  
Vol 312 ◽  
pp. 176-208
Author(s):  
Ali Oksasoglu ◽  
Qiudong Wang
Keyword(s):  

Author(s):  
Tatsuya Hiraoka ◽  
Sho Takase ◽  
Kei Uchiumi ◽  
Atsushi Keyaki ◽  
Naoaki Okazaki

We propose a method to pay attention to high-order relations among latent states to improve the conventional HMMs that focus only on the latest latent state, since they assume Markov property. To address the high-order relations, we apply an RNN to each sequence of latent states, because the RNN can represent the information of an arbitrary-length sequence with their cell: a fixed-size vector. However, the simplest way, which provides all latent sequences explicitly for the RNN, is intractable due to the combinatorial explosion of the search space of latent states. Thus, we modify the RNN to represent the history of latent states from the beginning of the sequence to the current state with a fixed number of RNN cells whose number is equal to the number of possible states. We conduct experiments on unsupervised POS tagging and synthetic datasets. Experimental results show that the proposed method achieves better performance than previous methods. In addition, the results on the synthetic dataset indicate that the proposed method can capture the high-order relations.


Sign in / Sign up

Export Citation Format

Share Document