scholarly journals Accurate Prediction of Gas Chromatographic Retention Times via Density Functional Theory Calculations: A Case Study Using Brominated Flame Retardants

2020 ◽  
Vol 5 (8) ◽  
pp. 2476-2481
Author(s):  
Alexandra M. Izydorczak ◽  
Michael S. Gross ◽  
Diana S. Aga ◽  
Scott Simpson
RSC Advances ◽  
2016 ◽  
Vol 6 (103) ◽  
pp. 101216-101225 ◽  
Author(s):  
Renan Augusto Pontes Ribeiro ◽  
Sergio Ricardo de Lazaro ◽  
Carlo Gatti

In this study, ab initio density functional theory calculations were performed on ATiO3 (A = Mn, Fe, Ni) materials for multiferroic applications.


2018 ◽  
Vol 29 (3) ◽  
pp. 921-927 ◽  
Author(s):  
Dan Maftei ◽  
Dragoș-Lucian Isac ◽  
Mihai Dumitraș ◽  
Ștefan Bucur ◽  
Alin-Constantin Dîrțu

2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


Sign in / Sign up

Export Citation Format

Share Document