solid electrolytes
Recently Published Documents





В.П. Смоленцев ◽  
А.А. Извеков

Рассмотрены вопросы изготовления открытых и полуоткрытых полостей в труднообрабатываемых деталях путем использования твердого электролита, наносимого на заготовку перед установкой удаляемой вставки. Показаны особенности протекания процесса анодного растворения припуска при статическом состоянии рабочей среды. Такие исследования выполнены впервые. Разработаны и проверены на практике изготовления типовых деталей режимы обработки для реализации процесса. Показано, что твердые электролиты имеют перспективы для дальнейшего использования при проектировании технологических процессов изготовления сложнопрофильных изделий из металлических труднообрабатываемых материалов, в том числе внедряемых на создаваемых образцах ракетно-космической техники. Они расширяют технологические возможности комбинированных методов, в которых одним из воздействующих факторов является электрическое и электромагнитное поле с высокой концентрацией мощности в импульсе. Впервые достигнута возможность разделять сборочные единицы путем образования зазора между сопрягаемыми деталями без доступа в зону обработки жидкой рабочей среды, определяющей возможность локального съема припуска в месте сопряжения и удаления слоя материала, достаточного для разборки узлов. Заложены основы использования для нанесения твердого электролита аддитивных технологий путем наращивания равномерных слоев перед сборкой изделия. Предлагаемая технология перспективна для изготовления сборных конструкций с ограниченным доступом инструмента в зону выполнения операции. Кроме того, новая технология может успешно применяться в процессе ремонта машин We considered the issues of manufacturing open and semi-open cavities in difficult-to-machine parts by using solid electrolyte applied to the workpiece before installing the removable insert. We show the features of the process of anodic dissolution of the allowance at a static state of the working medium. Such studies have been performed for the first time. We developed and tested in practice the processing modes for the implementation of the process for the manufacture of standard parts. We show that solid electrolytes have prospects for further use in the design of technological processes for the manufacture of complex-profile products from metal hard-to-machine materials, including those introduced on the created samples of rocket and space technology. They expand the technological capabilities of combined methods, in which one of the influencing factors is an electric and electromagnetic field with a high concentration of power in a pulse. For the first time, the ability to separate assembly units by forming a gap between mating parts without access to the processing zone of a liquid working medium has been achieved, which determines the possibility of local removal of the allowance at the mating point and removal of a layer of material sufficient for disassembling the units. We laid the foundations for the use of additive technologies for applying solid electrolyte by building up uniform layers before assembling the product. The proposed technology is promising for the manufacture of prefabricated structures with limited tool access to the operation area. In addition, the new technology can be successfully applied in the process of car repair

2022 ◽  
pp. 1-12
Nastran Khodabandehloo ◽  
Kosar Mozaffari ◽  
Liping Liu ◽  
Pradeep Sharma

Abstract Electrolyte in a rechargeable Li-ion battery plays a critical role in determining its capacity and efficiency. While the typically used electrolytes in Li-ion batteries are liquid, soft solid electrolytes are being increasingly explored as an alternative due to their advantages in terms of increased stability, safety and potential applications in the context of flexible and stretchable electronics. However, ionic conductivity of solid polymer electrolytes is significantly lower compared to liquid electrolytes. In a recent work, we developed a theoretical framework to model the coupled deformation, electrostatics and diffusion in heterogeneous electrolytes and also established a simple homogenization approach for the design of microstructures to enhance ionic conductivity of composite solid electrolytes. Guided by the insights from the theoretical framework, in this paper, we ex- amine specific microstructures that can potentially yield significant improvement in the effective ionic conductivity. We numerically implement our theory in the open source general purpose finite element package FEniCS to solve the governing equations and present numerical solutions and insights on the effect of microstructure on the enhancement of ionic conductivity. Specifically, we investigate the effect of shape by considering ellipsoidal inclusions. We also propose an easily manufacturable microstructure that increases the ionic conductivity of the composite electrolyte by forty times, simply by the addition of dielectric columns parallel to the solid electrolyte phase.

Seamus D. Jones ◽  
Howie Nguyen ◽  
Peter M. Richardson ◽  
Yan-Qiao Chen ◽  
Kira E. Wyckoff ◽  

E. A. Il’ina ◽  
K. V. Druzhinin ◽  
E. D. Lyalin ◽  
M. S. Plekhanov ◽  
I. I. Talankin ◽  

Nature Energy ◽  
2022 ◽  
Laidong Zhou ◽  
Tong-Tong Zuo ◽  
Chun Yuen Kwok ◽  
Se Young Kim ◽  
Abdeljalil Assoud ◽  

2022 ◽  
Vol 334 ◽  
pp. 04009
Giovanni d’Andrea ◽  
Enrico Squizzato ◽  
Antonella Glisenti

Electrochemically active oxide-based anodes capable of working in Single-Chamber Solid Oxide Fuel Cells (SC-SOFCs) were developed. Their performance is related to the selectivity of the electrodes. Tests are carried out on lab-scale devices with YSZ pellets as solid electrolytes in electrolyte supported cells. Selecting methane as a fuel, a gas mixture in the ratio CH4/O2 = 2 was chosen. The Ni-YSZ (NiO:YSZ=60:40) anode was optimized through CeO2 nanocatalysts infiltration to enhance the anode catalytic activity and make its reduction easier. Several infiltration amounts were compared, from null to 15% of the electrode weight. Both symmetric and complete cells (with LSCF-based cathodes) were tested in H2 and CH4/O2. For increasing amounts of infiltrated CeO2, symmetric cells tests describe an area specific resistance (ASR) reduction from 40 Ω cm2 to 1.7 Ω cm2 in hydrogen and from 11 Ω cm2 to 3.9 Ω cm2 in the methane/oxygen mixture. While complete cells tests displayed an ASR drop from 30 Ω cm2 to 2.9 Ω cm2 in H2, and from 8.7 Ω cm2 to 4.3 Ω cm2 in the methane/oxygen mixture, while OCP and power grew from 478 mV and 3.7 mW cm-2 to 766 mV and 13 mW cm-2.

Sign in / Sign up

Export Citation Format

Share Document