Scheduling Model of Power System Based on Forecasting Error of Wind Power Plant Output

Author(s):  
Kai Sun ◽  
Zhenhai Dou ◽  
Yaling Zhu ◽  
Qingling Liao ◽  
Shuqian Si ◽  
...  
2021 ◽  
Vol 1 (1) ◽  
pp. 32-44
Author(s):  
Sagar Dharel ◽  
Rabindra Maharjan

Government of Nepal has realized that wind energy could become a major source of alternative energy to solve energy crisis in the country as well as serve the purpose of energy mix. Various studies have identified several locations with potential for wind power generation in Nepal. The integration of wind power plant to the national grid, however, raises concerns regarding the power system stability. The voltage stability of the grid is a key issue, the effect on which increases with the increase in wind power penetration in the grid. This study performs voltage stability analysis due to high penetration of wind power in Integrated Nepalese Power System (INPS). Both steady state and dynamic stability study is performed using the power system simulation software DigSILENT/PowerFactory for different types of wind turbine generators.


2019 ◽  
Vol 13 (15) ◽  
pp. 2807-2816 ◽  
Author(s):  
Ana Fernández‐Guillamón ◽  
Antonio Vigueras‐Rodríguez ◽  
Ángel Molina‐García

2021 ◽  
Vol 56 (3) ◽  
pp. 111-123
Author(s):  
Muhammad Bachtiar Nappu ◽  
Ardiaty Arief ◽  
Ainun Maulidah

A sound power system must have voltage values at all buses that do not exceed the tolerance limit of ± 5% with small power losses. Voltage instability can be caused by interference or sudden power generation outage from the system. Indonesia's Southern Sulawesi power system has been interconnected with wind power plants located in Sidrap Regency and Jeneponto Regency. Wind speed energy used by wind power plants to generate electricity vary and not always constant. Hence, this can cause fluctuations and produce varied outputs that will affect the voltage profile and stability of the Southern Sulawesi interconnection system. Therefore, it is essential to assess the voltage stability of the Southern Sulawesi power system after the integration of Sidrap and Jeneponto WPPs. First, this study analyzes the voltage profile of the Southern Sulawesi interconnection system voltage after integrating the Sidrap wind power plants and Jeneponto Wind Power Plant during the peak day load and peak night load. Second, the study assesses the voltage stability with a varied output power of both Sidrap and Jeneponto Wind Power Plant. After integrating Sidrap and Jeneponto Wind Power Plants, the results showed that the voltage values at all system buses are stable and within the IEEE standard (between 0.95 p.u. and 1.05 p.u.). In addition, the voltages of the Southern Sulawesi power system with various outputs of both WPPs are still stable and within the IEEE standard.


Sign in / Sign up

Export Citation Format

Share Document