Stochastic optimization methods in optimal engineering design under stochastic uncertainty

Author(s):  
K. Marti
Algorithms ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Jalal Al-afandi ◽  
Horváth András

Genetic Algorithms are stochastic optimization methods where solution candidates, complying to a specific problem representation, are evaluated according to a predefined fitness function. These approaches can provide solutions in various tasks even, where analytic solutions can not be or are too complex to be computed. In this paper we will show, how certain set of problems are partially solvable allowing us to grade segments of a solution individually, which results local and individual tuning of mutation parameters for genes. We will demonstrate the efficiency of our method on the N-Queens and travelling salesman problems where we can demonstrate that our approach always results faster convergence and in most cases a lower error than the traditional approach.


2012 ◽  
Vol 215-216 ◽  
pp. 133-137
Author(s):  
Guo Shao Su ◽  
Yan Zhang ◽  
Zhen Xing Wu ◽  
Liu Bin Yan

Covariance matrix adaptation evolution strategy algorithm (CMA-ES) is a newly evolution algorithm. It has become a powerful tool for solving highly nonlinear multi-peak optimization problems. In many real-world optimization problems, the location of multiple optima is often required in a search space. In order to evaluate the solution, thousands of fitness function evaluations are involved that is a time consuming or expensive processes. Therefore, conventional stochastic optimization methods meet a special challenge for a very large number of problem function evaluations. Aiming to overcome the shortcoming of stochastic optimization methods in the high calculation cost, a truss optimal method based on CMA-ES algorithm is proposed and applied to solve the section and shape optimization problems of trusses. The study results show that the method is feasible and has the advantages of high accuracy, high efficiency and easy implementation.


Author(s):  
R. Ellsworth ◽  
A. Parkinson ◽  
F. Cain

Abstract In many engineering design problems, the designer converges upon a good design by iteratively evaluating a mathematical model of the design problem. The trial-and-error method used by the designer to converge upon a solution may be complex and difficult to capture in an expert system. It is suggested that in many cases, the design rule base could be made significantly smaller and more maintainable by using numerical optimization methods to identify the best design. The expert system is then used to define the optimization problem and interpret the solution, as well as to apply the true heuristics to the problem. An example of such an expert system is presented for the design of a valve anti-cavitation device. Because of the capabilities provided by the optimization software, the expert system has been able to outperform the expert in the test cases evaluated so far.


Sign in / Sign up

Export Citation Format

Share Document