scholarly journals Mean Convergence of Generalized Jacobi Series and Interpolating Polynomials, I

1993 ◽  
Vol 72 (3) ◽  
pp. 237-251 ◽  
Author(s):  
Y. Xu
2021 ◽  
Vol 15 ◽  
pp. 70
Author(s):  
S.V. Goncharov ◽  
V.P. Motornyi

We establish the order of growth of modified Lebesgue constants of Fourier-Jacobi sums in $L_{p,w}$ spaces.


2010 ◽  
Vol 62 (6) ◽  
pp. 943-960 ◽  
Author(s):  
V. P. Motornyi ◽  
S. V. Goncharov ◽  
P. K. Nitiema

1998 ◽  
Vol 57 (2) ◽  
pp. 275-288
Author(s):  
H.S. Jung ◽  
K.H. Kwon

A quadrature formula for a variable-signed weight function w(x) is constructed using Hermite interpolating polynomials. We show its mean and quadratic mean convergence. We also discuss the rate of convergence in terms of the modulus of continuity for higher order derivatives with respect to the sup norm.


1969 ◽  
Vol 23 (2) ◽  
pp. 306-306 ◽  
Author(s):  
Benjamin Muckenhoupt

1950 ◽  
Vol 72 (4) ◽  
pp. 792 ◽  
Author(s):  
G. Milton Wing

1990 ◽  
Vol 61 (2) ◽  
pp. 222-238 ◽  
Author(s):  
JoséJ Guadalupe ◽  
Mario Pérez ◽  
Juan L Varona
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document