fractional integrals
Recently Published Documents


TOTAL DOCUMENTS

944
(FIVE YEARS 370)

H-INDEX

31
(FIVE YEARS 11)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 264
Author(s):  
Kin Keung Lai ◽  
Jaya Bisht ◽  
Nidhi Sharma ◽  
Shashi Kant Mishra

We introduce a new class of interval-valued preinvex functions termed as harmonically h-preinvex interval-valued functions. We establish new inclusion of Hermite–Hadamard for harmonically h-preinvex interval-valued function via interval-valued Riemann–Liouville fractional integrals. Further, we prove fractional Hermite–Hadamard-type inclusions for the product of two harmonically h-preinvex interval-valued functions. In this way, these findings include several well-known results and newly obtained results of the existing literature as special cases. Moreover, applications of the main results are demonstrated by presenting some examples.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Lei Chen ◽  
Waqas Nazeer ◽  
Farman Ali ◽  
Thongchai Botmart ◽  
Sarah Mehfooz

In this research, by using a weighted fractional integral, we establish a midpoint version of Hermite-Hadamrad Fejér type inequality for η -convex function on a specific interval. To confirm the validity, we considered some special cases of our results and relate them with already existing results. It can be observed that several existing results are special cases of our presented results.


2022 ◽  
Vol 6 (1) ◽  
pp. 28
Author(s):  
Tao Yan ◽  
Ghulam Farid ◽  
Hafsa Yasmeen ◽  
Chahn Yong Jung

In the literature of mathematical inequalities, convex functions of different kinds are used for the extension of classical Hadamard inequality. Fractional integral versions of the Hadamard inequality are also studied extensively by applying Riemann–Liouville fractional integrals. In this article, we define (α,h−m)-convex function with respect to a strictly monotone function that unifies several types of convexities defined in recent past. We establish fractional integral inequalities for this generalized convexity via Riemann–Liouville fractional integrals. The outcomes of this work contain compact formulas for fractional integral inequalities which generate results for different kinds of convex functions.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Saad Ihsan Butt ◽  
Praveen Agarwal ◽  
Saba Yousaf ◽  
Juan L. G. Guirao

AbstractIn this paper, we present a generalized Jensen-type inequality for generalized harmonically convex function on the fractal sets, and a generalized Jensen–Mercer inequality involving local fractional integrals is obtained. Moreover, we establish some generalized Jensen–Mercer-type local fractional integral inequalities for harmonically convex function. Also, we obtain some generalized related results using these inequalities on the fractal space. Finally, we give applications of generalized means and probability density function.


Automatica ◽  
2022 ◽  
Vol 135 ◽  
pp. 109996
Author(s):  
Yang Tian ◽  
Zhi-Bo Wang ◽  
Da-Yan Liu ◽  
Driss Boutat ◽  
Hao-Ran Liu

2021 ◽  
Vol 12 (4) ◽  
pp. 1-15
Author(s):  
GEORGE A. ANASTASSIOU

We introduce here the mixed generalized multivariate Prabhakar type left and right fractional integrals and study their basic properties, such as preservation of continuity and their boundedness as positive linear operators. Then we produce an interesting variety of related multivariate left and right fractional Hardy type inequalities under convexity. We introduce also other related multivariate fractional integrals


2021 ◽  
Vol 6 (1) ◽  
pp. 18
Author(s):  
Alexandru Tudorache ◽  
Rodica Luca

We investigate the existence and multiplicity of positive solutions for a system of Riemann–Liouville fractional differential equations with r-Laplacian operators and nonnegative singular nonlinearities depending on fractional integrals, supplemented with nonlocal uncoupled boundary conditions which contain Riemann–Stieltjes integrals and various fractional derivatives. In the proof of our main results we apply the Guo–Krasnosel’skii fixed point theorem of cone expansion and compression of norm type.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 74
Author(s):  
Humaira Kalsoom ◽  
Muhammad Amer Latif ◽  
Zareen A. Khan ◽  
Miguel Vivas-Cortez

In this article, firstly, we establish a novel definition of weighted interval-valued fractional integrals of a function Υ˘ using an another function ϑ(ζ˙). As an additional observation, it is noted that the new class of weighted interval-valued fractional integrals of a function Υ˘ by employing an additional function ϑ(ζ˙) characterizes a variety of new classes as special cases, which is a generalization of the previous class. Secondly, we prove a new version of the Hermite-Hadamard-Fejér type inequality for h-convex interval-valued functions using weighted interval-valued fractional integrals of a function Υ˘ according to another function ϑ(ζ˙). Finally, by using weighted interval-valued fractional integrals of a function Υ˘ according to another function ϑ(ζ˙), we are establishing a new Hermite-Hadamard-Fejér type inequality for harmonically h-convex interval-valued functions that is not previously known. Moreover, some examples are provided to demonstrate our results.


Fractals ◽  
2021 ◽  
Author(s):  
XIA TING ◽  
CHEN LEI ◽  
LUO LING ◽  
WANG YONG

This paper mainly discusses the influence of the Weyl fractional integrals on continuous functions and proves that the Weyl fractional integrals can retain good properties of many functions. For example, a bounded variation function is still a bounded variation function after the Weyl fractional integral. Continuous functions that satisfy the Holder condition after the Weyl fractional integral still satisfy the Holder condition, furthermore, there is a linear relationship between the order of the Holder conditions of the two functions. At the end of this paper, the classical Weierstrass function is used as an example to prove the above conclusion.


Sign in / Sign up

Export Citation Format

Share Document