Quantum effects in non inertial frames and quantum covariance

Author(s):  
Denis bernard
1997 ◽  
Vol 161 ◽  
pp. 611-621
Author(s):  
Guillermo A. Lemarchand ◽  
Fernando R. Colomb ◽  
E. Eduardo Hurrell ◽  
Juan Carlos Olalde

AbstractProject META II, a full sky survey for artificial narrow-band signals, has been conducted from one of the two 30-m radiotelescopes of the Instituto Argentino de Radioastronomía (IAR). The search was performed near the 1420 Mhz line of neutral hydrogen, using a 8.4 million channels Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earths rotation, which provides a characteristic changing signature for narrow-band signals of extraterrestrial origin. Among the 2 × 1013spectral channels analyzed, 29 extra-statistical narrow-band events were found, exceeding the average threshold of 1.7 × 10−23Wm−2. The strongest signals that survive culling for terrestrial interference lie in or near the galactic plane. A description of the project META II observing scheme and results is made as well as the possible interpretation of the results using the Cordes-Lazio-Sagan model based in interstellar scattering theory.


1984 ◽  
Vol 144 (9) ◽  
pp. 3 ◽  
Author(s):  
Yurii M. Tsipenyuk ◽  
Yu.B. Ostapenko ◽  
G.N. Smirenkin ◽  
A.S. Soldatov

2018 ◽  
Vol 189 (06) ◽  
pp. 659-664
Author(s):  
Sergei M. Stishov
Keyword(s):  

Author(s):  
Sergei E. Kuratov ◽  
Dmitry S. Shidlovski ◽  
Sergei I. Blinnikov ◽  
Sergey Yu. Igashov

Author(s):  
Peter Mann

This chapter discusses the importance of circular motion and rotations, whose applications to chemical systems are plentiful. Circular motion is the book’s first example of a special case of motion using the laws developed in previous chapters. The chapter begins with the basic definitions of circular motion; as uniform rotation around a principle axis is much easier to consider, it is the focus of this chapter and is used to develop some key ideas. The chapter discusses angular displacement, angular velocity, angular momentum, torque, rigid bodies, orbital and spin momenta, inertia tensors and non-inertial frames and explores fictitious forces as well as transformations in rotating frames.


Sign in / Sign up

Export Citation Format

Share Document