Reproducing Kernel Element Interpolation: Globally Conforming I m/C n/P k Hierarchies

Author(s):  
Shaofan Li ◽  
Daniel C. Simkins ◽  
Hongsheng Lu ◽  
Wing Kam Liu
2009 ◽  
Vol 44 (3) ◽  
pp. 333-342 ◽  
Author(s):  
Nathan Collier ◽  
Daniel Craig Simkins

2004 ◽  
Vol 193 (12-14) ◽  
pp. 953-987 ◽  
Author(s):  
Shaofan Li ◽  
Hongsheng Lu ◽  
Weimin Han ◽  
Wing Kam Liu ◽  
Daniel C. Simkins

2012 ◽  
Vol 8 (16) ◽  
pp. 71-96
Author(s):  
Mario J Juha

The Reproducing Kernel Element Method (RKEM) is a relatively new technique developed to have two distinguished features: arbitrary high order smoothness and arbitrary interpolation order of the shape functions. This paper provides a tutorial on the derivation and computational implementation of RKEM for Galerkin discretizations of linear elastostatic problems for one and two dimensional space. A key characteristic of RKEM is that it do not require mid-side nodes in the elements to increase the interpolatory power of its shape functions, and contrary to meshless methods, the same mesh used to construct the shape functions is used for integration of the stiffness matrix. Furthermore, some issues about the quadrature used for integration arediscussed in this paper. Its hopes that this may attracts the attention of mathematicians.


2004 ◽  
Vol 193 (12-14) ◽  
pp. 989-1011 ◽  
Author(s):  
Hongsheng Lu ◽  
Shaofan Li ◽  
Daniel C. Simkins ◽  
Wing Kam Liu ◽  
Jian Cao

2004 ◽  
Vol 193 (12-14) ◽  
pp. 933-951 ◽  
Author(s):  
Wing Kam Liu ◽  
Weimin Han ◽  
Hongsheng Lu ◽  
Shaofan Li ◽  
Jian Cao

2004 ◽  
Vol 193 (12-14) ◽  
pp. 1013-1034 ◽  
Author(s):  
Daniel C. Simkins ◽  
Shaofan Li ◽  
Hongsheng Lu ◽  
Wing Kam Liu

2005 ◽  
Vol 63 (2) ◽  
pp. 241-255 ◽  
Author(s):  
Hongsheng Lu ◽  
Do Wan Kim ◽  
Wing Kam Liu

Sign in / Sign up

Export Citation Format

Share Document