dispersion equations
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 41)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 6 (1) ◽  
pp. 9
Author(s):  
Mohamed M. Al-Shomrani ◽  
Mohamed A. Abdelkawy

The advection–dispersion equations have gotten a lot of theoretical attention. The difficulty in dealing with these problems stems from the fact that there is no perfect answer and that tackling them using local numerical methods is tough. The Riesz fractional advection–dispersion equations are quantitatively studied in this research. The numerical methodology is based on the collocation approach and a simple numerical algorithm. To show the technique’s performance and competency, a comprehensive theoretical formulation is provided, along with numerical examples.


2021 ◽  
Vol 24 (3) ◽  
pp. 18-27
Author(s):  
Mikhail V. Davidovich ◽  
Alexander K. Kobetz ◽  
Kirill A. Sayapin

The problem of searching for complex roots of the dispersion equations of plasmon-polaritons along the boundaries of the layered structure-vacuum interface is considered. Such problems arise when determining proper waves along the interface of structures supporting surface and leakage waves, including plasmons and polaritons along metal, dielectric and other surfaces. For the numerical solution of the problem, we consider a modification of the method of simple iterations with a variable iteration parameter leading to a zero derivative of the right side of the equation at each step, i.e. convergent iterations, as well as a modification of the minimum residuals method. It is shown that the method of minimal residuals with linearization coincides with the method of simple iterations with the specified correction. Convergent methods of higher orders are considered. The results are demonstrated by examples, including complex solutions of dispersion equations for plasmon-polaritons. The advantage of the method over other methods of searching for complex roots in electrodynamics problems is the possibility of ordering the roots and constructing dispersion branches without discontinuities. This allows you to classify modes.


2021 ◽  
Vol 21 (2) ◽  
pp. 119-125
Author(s):  
Yong Heui Cho

Analytical hybrid-mode dispersion relations of a lossy coaxial waveguide were rigorously analyzed using a mode-matching technique. In order to model a practical coaxial line with inevitable losses, we adopted an all-dielectric coaxial waveguide surrounded by the perfect electric conductor (PEC) boundary. The rigorous dispersion characteristics of the TM<sub>01</sub>, TE<sub>01</sub>, and EH<sub>11</sub> modes were investigated for lossy coaxial waveguides filled with different electrical conductivities. Based on the exact solutions, approximate but accurate dispersion equations were proposed for the TM<sub>0<i>p</i></sub>, TE<sub>0<i>p</i></sub> , EH<sub><i>mp</i></sub>, and HE<sub><i>mp</i></sub> modes in order to estimate and compare the behaviors of complex propagation constants in the microwave and visible spectra.


Sign in / Sign up

Export Citation Format

Share Document