Unification of higher-order patterns in a simply typed lambda-calculus with finite products and terminal type

Author(s):  
Roland Fettig ◽  
Bernd Löchner
2018 ◽  
Vol 28 (9) ◽  
pp. 1606-1638 ◽  
Author(s):  
ANDREW CAVE ◽  
BRIGITTE PIENTKA

Proofs with logical relations play a key role to establish rich properties such as normalization or contextual equivalence. They are also challenging to mechanize. In this paper, we describe two case studies using the proof environmentBeluga: First, we explain the mechanization of the weak normalization proof for the simply typed lambda-calculus; second, we outline how to mechanize the completeness proof of algorithmic equality for simply typed lambda-terms where we reason about logically equivalent terms. The development of these proofs inBelugarelies on three key ingredients: (1) we encode lambda-terms together with their typing rules, operational semantics, algorithmic and declarative equality using higher order abstract syntax (HOAS) thereby avoiding the need to manipulate and deal with binders, renaming and substitutions, (2) we take advantage ofBeluga's support for representing derivations that depend on assumptions and first-class contexts to directly state inductive properties such as logical relations and inductive proofs, (3) we exploitBeluga's rich equational theory for simultaneous substitutions; as a consequence, users do not need to establish and subsequently use substitution properties, and proofs are not cluttered with references to them. We believe these examples demonstrate thatBelugaprovides the right level of abstractions and primitives to mechanize challenging proofs using HOAS encodings. It also may serve as a valuable benchmark for other proof environments.


10.29007/3n54 ◽  
2018 ◽  
Author(s):  
Thomas Icard ◽  
Lawrence Moss

This paper adds monotonicity and antitonicity information to the typed lambda calculus, thereby providing a foundation for the Monotonicity Calculus first developed by van Benthem and others. We establish properties of the type system, propose a syntax, semantics, and proof calculus, and prove completeness for the calculus with respect to hierarchies of monotone and antitone functions over base preorders.


Author(s):  
Marcelo Fiore ◽  
Philip Saville

AbstractThe glueing construction, defined as a certain comma category, is an important tool for reasoning about type theories, logics, and programming languages. Here we extend the construction to accommodate ‘2-dimensional theories’ of types, terms between types, and rewrites between terms. Taking bicategories as the semantic framework for such systems, we define the glueing bicategory and establish a bicategorical version of the well-known construction of cartesian closed structure on a glueing category. As an application, we show that free finite-product bicategories are fully complete relative to free cartesian closed bicategories, thereby establishing that the higher-order equational theory of rewriting in the simply-typed lambda calculus is a conservative extension of the algebraic equational theory of rewriting in the fragment with finite products only.


2000 ◽  
Vol 7 (34) ◽  
Author(s):  
Olivier Danvy ◽  
Morten Rhiger

<p>We present a simple way to program typed abstract syntax in a <br />language following a Hindley-Milner typing discipline, such as Haskell and ML, and we apply it to automate two proofs about normalization functions as embodied in type-directed partial evaluation for the simply typed lambda calculus: normalization functions (1) preserve types and (2) yield long beta-eta normal forms.</p><p>Keywords: Type-directed partial evaluation, normalization functions, simply-typed lambda-calculus, higher-order abstract syntax, Haskell.</p>


10.29007/xtb8 ◽  
2018 ◽  
Author(s):  
Thierry Boy de La Tour

Two non deterministic algorithms for generalizing a solution of a constraint expressed in second order typed lambda-calculus are presented. One algorithm derives from the proof of completeness of the higher order unification rules by D. C. Jensen and T. Pietrzykowski, the other is abstracted from an algorithm by N. Peltier and the author for generalizing proofs. A framework is developed in which such constrained generalization algorithms can be designed, allowing a uniform presentation for the two algorithms. Their relative strength at generalization is then analyzed through some properties of interest: their behaviour on valid and first order constraints, or whether they may be iterated or composed.


2020 ◽  
Vol 4 (POPL) ◽  
pp. 1-27 ◽  
Author(s):  
Aloïs Brunel ◽  
Damiano Mazza ◽  
Michele Pagani

2013 ◽  
pp. 5-54
Author(s):  
Henk Barendregt ◽  
Wil Dekkers ◽  
Richard Statman

Sign in / Sign up

Export Citation Format

Share Document