Crystalline representations and F-crystals

Author(s):  
Mark Kisin
2015 ◽  
Vol 9 (8) ◽  
pp. 1741-1792 ◽  
Author(s):  
Brandon Levin

2018 ◽  
Vol 14 (07) ◽  
pp. 1857-1894 ◽  
Author(s):  
Sandra Rozensztajn

We describe an algorithm to compute the reduction modulo [Formula: see text] of a crystalline Galois representation of dimension [Formula: see text] of [Formula: see text] with distinct Hodge–Tate weights via the semi-simple modulo [Formula: see text] Langlands correspondence. We give some examples computed with an implementation of this algorithm in SAGE.


2000 ◽  
Vol 104 (2) ◽  
pp. 211-267 ◽  
Author(s):  
Denis Benois

1988 ◽  
Vol 43 (3) ◽  
pp. 195-196
Author(s):  
V A Abrashkin

2004 ◽  
Vol 329 (2) ◽  
pp. 365-377 ◽  
Author(s):  
Laurent Berger ◽  
Hanfeng Li ◽  
Hui June Zhu

2010 ◽  
Vol 147 (2) ◽  
pp. 375-427 ◽  
Author(s):  
Seunghwan Chang ◽  
Fred Diamond

AbstractLetKbe a finite unramified extension ofQp. We parametrize the (φ,Γ)-modules corresponding to reducible two-dimensional$\overline {\F }_p$-representations ofGKand characterize those which have reducible crystalline lifts with certain Hodge–Tate weights.


Sign in / Sign up

Export Citation Format

Share Document