Macro and Micro Applications of Case-Based Reasoning to Feature-Based Product Selection

Author(s):  
Guy Saward ◽  
Toby O’Dell
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fentahun Moges Kasie ◽  
Glen Bright

Purpose This paper aims to propose an intelligent system that serves as a cost estimator when new part orders are received from customers. Design/methodology/approach The methodologies applied in this study were case-based reasoning (CBR), analytic hierarchy process, rule-based reasoning and fuzzy set theory for case retrieval. The retrieved cases were revised using parametric and feature-based cost estimation techniques. Cases were represented using an object-oriented (OO) approach to characterize them in n-dimensional Euclidean vector space. Findings The proposed cost estimator retrieves historical cases that have the most similar cost estimates to the current new orders. Further, it revises the retrieved cost estimates based on attribute differences between new and retrieved cases using parametric and feature-based cost estimation techniques. Research limitations/implications The proposed system was illustrated using a numerical example by considering different lathe machine operations in a computer-based laboratory environment; however, its applicability was not validated in industrial situations. Originality/value Different intelligent methods were proposed in the past; however, the combination of fuzzy CBR, parametric and feature-oriented methods was not addressed in product cost estimation problems.


Vestnik MEI ◽  
2020 ◽  
Vol 5 (5) ◽  
pp. 132-139
Author(s):  
Ivan E. Kurilenko ◽  
◽  
Igor E. Nikonov ◽  

A method for solving the problem of classifying short-text messages in the form of sentences of customers uttered in talking via the telephone line of organizations is considered. To solve this problem, a classifier was developed, which is based on using a combination of two methods: a description of the subject area in the form of a hierarchy of entities and plausible reasoning based on the case-based reasoning approach, which is actively used in artificial intelligence systems. In solving various problems of artificial intelligence-based analysis of data, these methods have shown a high degree of efficiency, scalability, and independence from data structure. As part of using the case-based reasoning approach in the classifier, it is proposed to modify the TF-IDF (Term Frequency - Inverse Document Frequency) measure of assessing the text content taking into account known information about the distribution of documents by topics. The proposed modification makes it possible to improve the classification quality in comparison with classical measures, since it takes into account the information about the distribution of words not only in a separate document or topic, but in the entire database of cases. Experimental results are presented that confirm the effectiveness of the proposed metric and the developed classifier as applied to classification of customer sentences and providing them with the necessary information depending on the classification result. The developed text classification service prototype is used as part of the voice interaction module with the user in the objective of robotizing the telephone call routing system and making a shift from interaction between the user and system by means of buttons to their interaction through voice.


2018 ◽  
Vol 6 (1) ◽  
pp. 266-274
Author(s):  
D. Teja Santosh ◽  
◽  
K.C. Ravi Kumar ◽  
P. Chiranjeevi ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document