CS of General Semidirect Product Groups

Author(s):  
Syed Twareque Ali ◽  
Jean-Pierre Antoine ◽  
Jean-Pierre Gazeau
2017 ◽  
Vol 491 ◽  
pp. 314-342 ◽  
Author(s):  
Huah Chu ◽  
Shang Huang

2004 ◽  
Vol 58 (1) ◽  
pp. 33-58 ◽  
Author(s):  
Toshio SUMI

1996 ◽  
Vol 182 (2) ◽  
pp. 469-475 ◽  
Author(s):  
Burt Totaro

Author(s):  
Syed Twareque Ali ◽  
Jean-Pierre Antoine ◽  
Jean-Pierre Gazeau

2016 ◽  
Vol 101 (2) ◽  
pp. 171-187 ◽  
Author(s):  
ARASH GHAANI FARASHAHI

This paper presents a structured study for abstract harmonic analysis of relative convolutions over canonical homogeneous spaces of semidirect product groups. Let $H,K$ be locally compact groups and $\unicode[STIX]{x1D703}:H\rightarrow \text{Aut}(K)$ be a continuous homomorphism. Let $G_{\unicode[STIX]{x1D703}}=H\ltimes _{\unicode[STIX]{x1D703}}K$ be the semidirect product of $H$ and $K$ with respect to $\unicode[STIX]{x1D703}$ and $G_{\unicode[STIX]{x1D703}}/H$ be the canonical homogeneous space (left coset space) of $G_{\unicode[STIX]{x1D703}}/H$. We present a unified approach to the harmonic analysis of relative convolutions over the canonical homogeneous space $G_{\unicode[STIX]{x1D703}}/H$.


Sign in / Sign up

Export Citation Format

Share Document