type theorem
Recently Published Documents


TOTAL DOCUMENTS

1481
(FIVE YEARS 313)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Feyza Tanberk Okumuş ◽  
Mahmut Akyiğit ◽  
Khursheed J. Ansari ◽  
Fuat Usta

Abstractthat fix the function $e^{-2x} $ e − 2 x for $x\geq 0 $ x ≥ 0 . Then, we provide the approximation properties of these newly defined operators for different types of function spaces. In addition, we focus on the rate of convergence utilizing appropriate moduli of continuity. Then, we provide the Voronovskaya-type theorem for these new operators. Finally, in order to validate our theoretical results, we provide some numerical experiments that are produced by a MATLAB complier.


2022 ◽  
Vol 395 ◽  
pp. 108157
Author(s):  
S. Artstein-Avidan ◽  
S. Sadovsky ◽  
K. Wyczesany
Keyword(s):  

2022 ◽  
Vol 77 ◽  
pp. 101936
Author(s):  
Shamil Asgarli ◽  
Dragos Ghioca
Keyword(s):  

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Congcong Li ◽  
Chunqiu Li ◽  
Jintao Wang

<p style='text-indent:20px;'>In this article, we are concerned with statistical solutions for the nonautonomous coupled Schrödinger-Boussinesq equations on infinite lattices. Firstly, we verify the existence of a pullback-<inline-formula><tex-math id="M1">\begin{document}$ {\mathcal{D}} $\end{document}</tex-math></inline-formula> attractor and establish the existence of a unique family of invariant Borel probability measures carried by the pullback-<inline-formula><tex-math id="M2">\begin{document}$ {\mathcal{D}} $\end{document}</tex-math></inline-formula> attractor for this lattice system. Then, it will be shown that the family of invariant Borel probability measures is a statistical solution and satisfies a Liouville type theorem. Finally, we illustrate that the invariant property of the statistical solution is indeed a particular case of the Liouville type theorem.</p>


2021 ◽  
Vol 13 (3) ◽  
pp. 818-830
Author(s):  
M. Qasim ◽  
A. Khan ◽  
Z. Abbas ◽  
M. Mursaleen

In the present paper, we consider the Kantorovich modification of generalized Lupaş operators, whose construction depends on a continuously differentiable, increasing and unbounded function $\rho$. For these new operators we give weighted approximation, Voronovskaya type theorem, quantitative estimates for the local approximation.


2021 ◽  
Vol 13 (3) ◽  
pp. 734-749
Author(s):  
A. Khan ◽  
M. Iliyas ◽  
M.S. Mansoori ◽  
M. Mursaleen

This paper deals with Lupaş post quantum Bernstein operators over arbitrary closed and bounded interval constructed with the help of Lupaş post quantum Bernstein bases. Due to the property that these bases are scale invariant and translation invariant, the derived results on arbitrary intervals are important from computational point of view. Approximation properties of Lupaş post quantum Bernstein operators on arbitrary compact intervals based on Korovkin type theorem are studied. More general situation along all possible cases have been discussed favouring convergence of sequence of Lupaş post quantum Bernstein operators to any continuous function defined on compact interval. Rate of convergence by modulus of continuity and functions of Lipschitz class are computed. Graphical analysis has been presented with the help of MATLAB to demonstrate approximation of continuous functions by Lupaş post quantum Bernstein operators on different compact intervals.


Author(s):  
S.G. Samko ◽  
S.M. Umarkhadzhiev

We introduce ``local grand'' Lebesgue spaces $L^{p),\theta}_{x_0,a}(\Omega)$, $0<p<\infty,$ $\Omega \subseteq \mathbb{R}^n$, where the process of ``grandization'' relates to a single point $x_0\in \Omega$, contrast to the case of usual known grand spaces $L^{p),\theta}(\Omega)$, where ``grandization'' relates to all the points of $\Omega$. We define the space $L^{p),\theta}_{x_0,a}(\Omega)$ by means of the weight $a(|x-x_0|)^{\varepsilon p}$ with small exponent, $a(0)=0$. Under some rather wide assumptions on the choice of the local ``grandizer'' $a(t)$, we prove some properties of these spaces including their equivalence under different choices of the grandizers $a(t)$ and show that the maximal, singular and Hardy operators preserve such a ``single-point grandization'' of Lebesgue spaces $L^p(\Omega)$, $1<p<\infty$, provided that the lower Matuszewska--Orlicz index of the function $a$ is positive. A Sobolev-type theorem is also proved in local grand spaces under the same condition on the grandizer.


Sign in / Sign up

Export Citation Format

Share Document