Cathepsin L and Cathepsin B3 from Rat Liver Lysosomes

Author(s):  
H. Kirschke ◽  
J. Langner ◽  
B. Wiederanders ◽  
S. Ansorge ◽  
P. Bohley ◽  
...  



1977 ◽  
Vol 74 (2) ◽  
pp. 293-301 ◽  
Author(s):  
Heidrun KIRSCHKE ◽  
Jurgen LANGER ◽  
Bernd WIEDERANDERS ◽  
Siegfried ANSORGE ◽  
Peter BOHLEY


1994 ◽  
Vol 298 (1) ◽  
pp. 79-85 ◽  
Author(s):  
A Tsuji ◽  
T Akamatsu ◽  
H Nagamune ◽  
Y Matsuda

The alpha 1-macroglobulin-proteinase complex endocytosed into rat liver lysosomes was purified by a series of column chromatographic steps on concanavalin A-Sepharose, Sephacryl S-300, DEAE-cellulose and TSK gel DEAE-5PW columns. The complex contained no detectable alpha 2-macroglobulin. Studies on the substrate specificity indicated that the complex had tryptase-like activities towards various synthetic substrates, but no elastase, chymotrypsin, cathepsin-B and cathepsin-L activities. The proteinase activity was completely inhibited by di-isopropyl fluorophosphate, leupeptin and antipain, indicating that the proteinase bound to alpha 1-macroglobulin is a serine proteinase. Two protein bands (62 and 59 kDa) of the complex were labelled with [3H]diisopropyl fluorophosphate and both bands cross-reacted with anti-(mast-cell tryptase)antibody. These results suggest that mast-cell tryptase is a major targeting proteinase for alpha 1-macroglobulin in vivo. The main alpha-macroglobulin-proteinase complex in the adjuvant-treated rats was also the alpha 1-macroglobulin-tryptase complex, even though the plasma level of alpha 2-macroglobulin was elevated.





1968 ◽  
Vol 243 (17) ◽  
pp. 4494-4499
Author(s):  
N N Aronson ◽  
E A Davidson


2009 ◽  
Vol 103 (2) ◽  
pp. 197-205 ◽  
Author(s):  
Hsu-Fang Chou ◽  
Kun-Hung Chuang ◽  
Yi-Shan Tsai ◽  
Yi-Ju Chen

Genistein and daidzein are known to have both beneficial and adverse effects on human health due to their many biological actions at the cellular level. Both isoflavones have been shown to inhibit GLUT-mediated glucose transport across the plasma membrane of mammalian cells. Since lysosomal membrane transport is essential for maintaining cellular homeostasis, the present study examined the effects of genistein and daidzein on glucose and sulphate transport in isolated rat liver lysosomes. Both genistein and daidzein significantly inhibited lysosomal glucose uptake. Genistein was a more potent glucose transport inhibitor than daidzein, with a half-maximum inhibitory concentration (IC50) of 45 μmol/l compared with 71 μmol/l for daidzein. Uptake kinetics of d-glucose showed a significant decrease in Vmax (control:genistein treat = 1489 (sem 91):507 (sem 76) pmol/unit of β-hexosaminidase per 15 s) without a change in Km. The presence of 50 μm-genistein in the medium also reduced glucose efflux from lysosomes preloaded with 100 mm-d-glucose. Genistein also inhibited lysosomal sulphate transport. Similar to its effects on glucose uptake kinetics, genistein treatment caused a significant decrease in sulphate uptake Vmax (control:genistein treat = 87 (sem 4):59 (sem 5) pmol/unit of β-hexosaminidase per 30 s), while the Km was not affected. The evidence provided by the present study suggests that the most likely mechanism of lysosomal glucose transport inhibition by genistein is via direct interaction between genistein and the transporter, rather than mediation by tyrosine kinase inactivation. Genistein likely has a similar mechanism of directly inhibiting sulphate transporter.



1988 ◽  
Vol 95 (4) ◽  
pp. 1088-1098 ◽  
Author(s):  
Richard B. Sewell ◽  
Susan A. Grinpukel ◽  
Alan R. Zinsmeister ◽  
Nicholas F. LaRusso


1969 ◽  
Vol 115 (5) ◽  
pp. 54P-54P ◽  
Author(s):  
D Robinson ◽  
P Willcox


Sign in / Sign up

Export Citation Format

Share Document