sugar phosphate
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 18)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Dylan Heussman ◽  
Justin Kittell ◽  
Peter H. von Hippel ◽  
Andrew H. Marcus

DNA replication, and the related processes of genome expression, require binding, assembly, and function of protein complexes at and near single-stranded (ss) -- double-stranded (ds) DNA junctions. These central protein-DNA interactions are likely influenced by thermally induced conformational fluctuations of the DNA scaffold across an unknown distribution of functionally relevant states to provide regulatory proteins access to properly conformed DNA binding sites. Thus, characterizing the nature of conformational fluctuations and the associated structural disorder at ss-dsDNA junctions is likely critical for understanding the molecular mechanisms of these central biological processes. Here we describe spectroscopic studies of model ss-dsDNA fork constructs that contain dimers of "internally labeled" cyanine (iCy3) chromophore probes that have been rigidly inserted within the sugar-phosphate backbones of the DNA strands. Our combined analyses of absorbance, circular dichroism (CD) and two-dimensional fluorescence spectroscopy (2DFS) permit us to characterize the local conformational parameters and conformational distributions. We find that the DNA sugar-phosphate backbones undergo abrupt successive changes in their local conformations -- initially from a right-handed and ordered DNA state to a disordered splayed-open structure and then to a disordered left-handed conformation -- as the dimer probes are moved across the ss-dsDNA junction. Our results suggest that the sugar-phosphate backbones at and near ss-dsDNA junctions adopt specific position-dependent local conformations and exhibit varying extents of conformational disorder that deviate widely from the Watson-Crick structure. We suggest that some of these conformations are likely to function as secondary-structure motifs for interaction with protein complexes that bind to and assemble at these sites.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5925
Author(s):  
Crystalle Chardet ◽  
Corinne Payrastre ◽  
Béatrice Gerland ◽  
Jean-Marc Escudier

Many strategies have been developed to modulate the biological or biotechnical properties of oligonucleotides by introducing new chemical functionalities or by enhancing their affinity and specificity while restricting their conformational space. Among them, we review our approach consisting of modifications of the 5’-C-position of the nucleoside sugar. This allows the introduction of an additional chemical handle at any position on the nucleotide chain without disturbing the Watson–Crick base-pairing. We show that 5’-C bromo or propargyl convertible nucleotides (CvN) are accessible in pure diastereoisomeric form, either for nucleophilic displacement or for CuAAC conjugation. Alternatively, the 5’-carbon can be connected in a stereo-controlled manner to the phosphate moiety of the nucleotide chain to generate conformationally constrained nucleotides (CNA). These allow the precise control of the sugar/phosphate backbone torsional angles. The consequent modulation of the nucleic acid shape induces outstanding stabilization properties of duplex or hairpin structures in accordance with the preorganization concept. Some biological applications of these distorted oligonucleotides are also described. Effectively, the convertible and the constrained approaches have been merged to create constrained and convertible nucleotides (C2NA) providing unique tools to functionalize and stabilize nucleic acids.


Author(s):  
Erin F. Boulanger ◽  
Anice Sabag-Daigle ◽  
Pankajavalli Thirugnanasambantham ◽  
Venkat Gopalan ◽  
Brian M. M. Ahmer

Accumulation of phosphorylated intermediates during cellular metabolism can have wide-ranging toxic effects on many organisms, including humans and the pathogens that infect them. These toxicities can be induced by feeding an upstream metabolite (a sugar, for instance) while simultaneously blocking the appropriate metabolic pathway with either a mutation or an enzyme inhibitor.


2021 ◽  
Vol 22 (15) ◽  
pp. 7873
Author(s):  
Alexander Svidlov ◽  
Mikhail Drobotenko ◽  
Alexander Basov ◽  
Eugeny Gerasimenko ◽  
Vadim Malyshko ◽  
...  

The sensitivity of DNA to electromagnetic radiation in different ranges differs depending on various factors. The aim of this study was to examine the molecular dynamics of DNA under the influence of external periodic influences with different frequencies. In the present paper, within the framework of a mechanical model without simplifications, we investigated the effect of various frequencies of external periodic action in the range from 1011 s−1 to 108 s−1 on the dynamics of a DNA molecule. It was shown that under the influence of an external periodic force, a DNA molecule can perform oscillatory movements with a specific frequency characteristic of this molecule, which differs from the frequency of the external influence ω. It was found that the frequency of such specific vibrations of a DNA molecule depends on the sequence of nucleotides. Using the developed mathematical model describing the rotational motion of the nitrogenous bases around the sugar–phosphate chain, it is possible to calculate the frequency and amplitude of the oscillations of an individual DNA area. Such calculations can find application in the field of molecular nanotechnology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qi Hao ◽  
Jin-Mi Heo ◽  
Boguslaw P. Nocek ◽  
Kevin G. Hicks ◽  
Vincent S. Stoll ◽  
...  

AbstractThe multi-subunit translation initiation factor eIF2B is a control node for protein synthesis. eIF2B activity is canonically modulated through stress-responsive phosphorylation of its substrate eIF2. The eIF2B regulatory subcomplex is evolutionarily related to sugar-metabolizing enzymes, but the biological relevance of this relationship was unknown. To identify natural ligands that might regulate eIF2B, we conduct unbiased binding- and activity-based screens followed by structural studies. We find that sugar phosphates occupy the ancestral catalytic site in the eIF2Bα subunit, promote eIF2B holoenzyme formation and enhance enzymatic activity towards eIF2. A mutant in the eIF2Bα ligand pocket that causes Vanishing White Matter disease fails to engage and is not stimulated by sugar phosphates. These data underscore the importance of allosteric metabolite modulation for proper eIF2B function. We propose that eIF2B evolved to couple nutrient status via sugar phosphate sensing with the rate of protein synthesis, one of the most energetically costly cellular processes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christopher A. Fenton ◽  
Qingling Tang ◽  
Daniel G. Olson ◽  
Marybeth I. Maloney ◽  
Jeffrey L. Bose ◽  
...  

The pyruvate kinase (PYK) isozyme from Thermoanaerobacterium saccharolyticum (TsPYK) has previously been used in metabolic engineering for improved ethanol production. This isozyme belongs to a subclass of PYK isozymes that include an extra C-domain. Like other isozymes that include this extra C-domain, we found that TsPYK is activated by AMP and ribose-5-phosphate (R5P). Our use of sugar-phosphate analogs generated a surprising result in that IMP and GMP are allosteric inhibitors (rather than activators) of TsPYK. We believe this to be the first report of any PYK isozyme being inhibited by IMP and GMP. A truncated protein that lacks the extra C-domain is also inhibited by IMP. A screen of several other bacterial PYK enzymes (include several that have the extra-C domain) indicates that the inhibition by IMP is specific to only a subset of those isozymes.


Sign in / Sign up

Export Citation Format

Share Document