Ionic Basis of Electrical Activity in Insect Nerve Cells and Synapses

Author(s):  
Yves Pichon
1980 ◽  
Vol 87 (1) ◽  
pp. 45-52
Author(s):  
I.D. LAWN

1. A conduction system in Stomphia transfers information across the mesogloea from ectodermal receptors to endodermal effectors. 2. In the column, this transmesogloeal system has numerous and widespread connexions. 3. It is suggested that the connexions may be processes from multipolar nerve cells located in the endoderm. 4. Certain aspects of behaviour are controlled by this conduction system which provides yet another pathway to co-ordinate electrical activity.


1968 ◽  
Vol 52 (3) ◽  
pp. 666-681 ◽  
Author(s):  
Billy K. Yeh ◽  
Brian F. Hoffman

The intracellular sodium concentration reported for young, embryonic chick hearts is extremely high and decreases progressively throughout the embryonic period, reaching a value of 43 mM immediately before hatching. This observation suggested that the ionic basis for excitation in embryonic chick heart may differ from that responsible for electrical activity of the adult organ. This hypothesis was tested by recording transmembrane resting and action potentials on hearts isolated from 6-day and 19-day chick embryos and varying the extracellular sodium and potassium concentrations. The results show that for both young and old embryonic cardiac cells the resting potential depends primarily on the extracellular potassium concentration and the amplitude and rate of rise of the action potential depend primarily on the extracellular sodium concentration.


1971 ◽  
Vol 2 (6) ◽  
pp. 484-489 ◽  
Author(s):  
G. N. Akoev ◽  
N. A. Sizaya

1951 ◽  
Vol 26 (4) ◽  
pp. 339-409 ◽  
Author(s):  
A. L. HODGKIN

1968 ◽  
Vol 52 (4) ◽  
pp. 666-681 ◽  
Author(s):  
Billy K. Yeh ◽  
Brian F. Hoffman

The intracellular sodium concentration reported for young, embryonic chick hearts is extremely high and decreases progressively throughout the embryonic period, reaching a value of 43 mM immediately before hatching. This observation suggested that the ionic basis for excitation in embryonic chick heart may differ from that responsible for electrical activity of the adult organ. This hypothesis was tested by recording transmembrane resting and action potentials on hearts isolated from 6-day and 19-day chick embryos and varying the extracellular sodium and potassium concentrations. The results show that for both young and old embryonic cardiac cells the resting potential depends primarily on the extracellular potassium concentration and the amplitude and rate of rise of the action potential depend primarily on the extracellular sodium concentration.


Author(s):  
R H. Selinfreund ◽  
A. H. Cornell-Bell

Cellular electrophysiological properties are normally monitored by standard patch clamp techniques . The combination of membrane potential dyes with time-lapse laser confocal microscopy provides a more direct, least destructive rapid method for monitoring changes in neuronal electrical activity. Using membrane potential dyes we found that spontaneous action potential firing can be detected using time-lapse confocal microscopy. Initially, patch clamp recording techniques were used to verify spontaneous electrical activity in GH4\C1 pituitary cells. It was found that serum depleted cells had reduced spontaneous electrical activity. Brief exposure to the serum derived growth factor, IGF-1, reconstituted electrical activity. We have examined the possibility of developing a rapid fluorescent assay to measure neuronal activity using membrane potential dyes. This neuronal regeneration assay has been adapted to run on a confocal microscope. Quantitative fluorescence is then used to measure a compounds ability to regenerate neuronal firing.The membrane potential dye di-8-ANEPPS was selected for these experiments. Di-8- ANEPPS is internalized slowly, has a high signal to noise ratio (40:1), has a linear fluorescent response to change in voltage.


Sign in / Sign up

Export Citation Format

Share Document