patch clamp recording
Recently Published Documents


TOTAL DOCUMENTS

532
(FIVE YEARS 100)

H-INDEX

56
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jinzhe Ma ◽  
Yangyang Han ◽  
Yiting Yao ◽  
Huimei Wang ◽  
Mengxia Chen ◽  
...  

As the final level of the binaural integration center in the subcortical nucleus, the inferior colliculus (IC) plays an essential role in receiving binaural information input. Previous studies have focused on how interactions between the bilateral IC affect the firing rate of IC neurons. However, little is known concerning how the interactions within the bilateral IC affect neuron latency. In this study, we explored the synaptic mechanism of the effect of bilateral IC interactions on the latency of IC neurons. We used whole-cell patch clamp recordings to assess synaptic responses in isolated brain slices of Kunming mice. The results demonstrated that the excitation-inhibition projection was the main projection between the bilateral IC. Also, the bilateral IC interactions could change the reaction latency of most neurons to different degrees. The variation in latency was related to the type of synaptic input and the relative intensity of the excitation and inhibition. Furthermore, the latency variation also was caused by the duration change of the first subthreshold depolarization firing response of the neurons. The distribution characteristics of the different types of synaptic input also differed. Excitatory-inhibitory neurons were widely distributed in the IC dorsal and central nuclei, while excitatory neurons were relatively concentrated in these two nuclei. Inhibitory neurons did not exhibit any apparent distribution trend due to the small number of assessed neurons. These results provided an experimental reference to reveal the modulatory functions of bilateral IC projections.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Heather L. Struckman ◽  
Mikhail Tarasov ◽  
Yusuf Olgar ◽  
Alec Miller ◽  
Jonathan P. Davis ◽  
...  

Calmodulin (CaM) prevents proarrhythmic late sodium current (INa) by facilitating normal inactivation of sodium channels (NaV). Since dysfunction of NaV1.6 has been implicated in late INa-mediated arrhythmias, we investigated its role in arrhythmias promoted by CaM mutant D96V. Super-resolution STED microscopy revealed enlarged NaV1.6 clusters in NaV1.6-expressing Chinese hamster ovary cells transfected with D96V-CaM relative to those transfected with WT-CaM. Therefore, we examined NaV1.6 clustering in transgenic mice with cardiac-specific expression of D96V-CaM (cD96V) with a C-terminal FLAG tag. Confocal microscopy confirmed expression of NaV1.6 and FLAG-tagged D96V-CaM in a striated pattern along with RYR2 in cD96V hearts, consistent with T-tubular localization. In both WT and cD96V hearts, STORM single molecule localization microscopy revealed that ∼50% of NaV1.6 clusters localized <100 nm from RYR2. However, NaV1.6 density within these regions was 67% greater in cD96V relative to WT. Consistent with this result, SICM-guided “smart” patch clamp recording of NaV activity from T-tubule openings revealed more frequent late-burst openings involving larger NaV clusters in cD96V myocytes relative to WT. Previous work identifies the sodium-calcium exchanger (NCX) as a key link between aberrant late NaV1.6 activity and proarrhythmic Ca2+ mishandling. Therefore, we explored the spatial organization of NaV1.6 and NCX using STORM. Consistent with their close association, 89% of NaV1.6 clusters localized <100 nm from NCX in cD96V hearts, compared with 77% in WT. Notably, density of both NaV1.6 and NCX was increased at these sites by 48% and 31%, respectively, in cD96V relative to WT. Consistent with these data, cD96V myocytes displayed larger, more frequent Ca2+ sparks relative to WT. These proarrhythmic functional effects were abrogated by cardiac-specific knockout of NaV1.6. To our knowledge, this is the first demonstration of proarrhythmic cardiac structural remodeling secondary to a defect in calmodulin, offering novel mechanistic insight into calmodulinopathy.


2021 ◽  
Vol 118 (46) ◽  
pp. e2115539118
Author(s):  
Pablo J. Lituma ◽  
Evan Woo ◽  
Bruce F. O’Hara ◽  
Pablo E. Castillo ◽  
Nicholas E. S. Sibinga ◽  
...  

Growing evidence indicates that microglia impact brain function by regulating synaptic pruning and formation as well as synaptic transmission and plasticity. Iba1 (ionized Ca+2-binding adapter protein 1), encoded by the Allograft inflammatory factor 1 (Aif1) gene, is an actin-interacting protein in microglia. Although Iba1 has long been used as a cellular marker for microglia, its functional role remains unknown. Here, we used global, Iba1-deficient (Aif1−/−) mice to characterize microglial activity, synaptic function, and behavior. Microglial imaging in acute hippocampal slices and fixed tissues from juvenile mice revealed that Aif1−/− microglia display reductions in ATP-induced motility and ramification, respectively. Biochemical assays further demonstrated that Aif1−/− brain tissues exhibit an altered expression of microglial-enriched proteins associated with synaptic pruning. Consistent with these changes, juvenile Aif1−/− mice displayed deficits in the excitatory synapse number and synaptic drive assessed by neuronal labeling and whole-cell patch-clamp recording in acute hippocampal slices. Unexpectedly, microglial synaptic engulfment capacity was diminished in juvenile Aif1−/− mice. During early postnatal development, when synapse formation is a predominant event in the hippocampus, the excitatory synapse number was still reduced in Aif1−/− mice. Together, these findings support an overall role of Iba1 in excitatory synaptic growth in juvenile mice. Lastly, postnatal synaptic deficits persisted in adulthood and correlated with significant behavioral changes in adult Aif1−/− mice, which exhibited impairments in object recognition memory and social interaction. These results suggest that Iba1 critically contributes to microglial activity underlying essential neuroglia developmental processes that may deeply influence behavior.


Author(s):  
Masahiro Kawatani ◽  
William deGroat ◽  
Keiichi Itoi ◽  
Katsuya Uchida ◽  
Kenji Sakimura ◽  
...  

Barrington's nucleus (Bar) which controls micturition behavior through downstream projections to the spinal cord contains two types of projection neurons BarCRH and BarESR1 that have different functions and target different spinal circuitry. Both types of neurons project to the L6-S1 spinal intermediolateral (IML) nucleus while BarESR1 neurons also project to the dorsal commissural nucleus (DCN). To obtain more information about the spinal circuits targeted by Bar, we used patch-clamp recording in spinal slices from adult mice in combination with optogenetic stimulation of Bar terminals. Recording of opto-evoked excitatory post synaptic currents (oEPSCs) in DiI-labeled lumbosacral preganglionic neurons (LS-PGN) revealed that both Bar neuronal populations make strong glutamatergic monosynaptic connections with LS-PGN, while BarESR1 neurons also elicited smaller amplitude glutamatergic polysynaptic oEPSCs or polysynaptic inhibitory post synaptic currents (oIPSCs) in some LS-PGN. Optical stimulation of BarCRH and BarESR1 terminals also elicited monosynaptic oEPSCs and polysynaptic oIPSCs in sacral DCN neurons, some of which must include interneurons projecting either to the IML or ventral horn. Application of capsaicin increased opto-evoked firing during repetitive stimulation of Bar terminals through the modulation of spontaneous post synaptic currents in LS-PGN. In conclusion, our experiments have provided insights into the synaptic mechanisms underlying the integration of inputs from Bar to autonomic circuitry in the lumbosacral spinal cord that may control micturition.


2021 ◽  
Author(s):  
Carlos G Vanoye ◽  
Reshma R Desai ◽  
Zhigang Ji ◽  
Sneha Adusumilli ◽  
Nirvani Jairam ◽  
...  

Hundreds of KCNQ2 variants have been identified by genetic testing of children with early onset epilepsy and/or developmental disability. Voltage-clamp recording from heterologous cells has proved useful for establishing deleterious functional effects of KCNQ2 variants, but procedures adapting these assays for standardized, higher throughput data collection and reporting are lacking. In this study, we employed automated patch clamp recording to assess in parallel the functional and pharmacological properties of 79 missense and 2 in-frame deletion variants of KCNQ2. Among the variants we studied were a training set of 18 pathogenic variants previously studied by voltage-clamp recording, 24 mostly rare population variants, and 39 disease-associated variants with unclear functional effects. Variant KCNQ2 subunits were transiently expressed in a cell line stably expressing KCNQ3 to reconstitute the physiologically relevant channel complex. Variants with severe loss-of-function were also co-expressed 1:1 with WT KCNQ2 in the KCNQ3 cell line to mimic the heterozygous genotype and assess dominant-negative behavior. In total, we analyzed electrophysiological data recorded from 9,480 cells. The functional properties of WT KCNQ2/KCNQ3 channels and pharmacological responses to known blockers and activators determined by automated patch clamp recording were highly concordant with previous findings. Similarly, functional properties of 18 known pathogenic variants largely matched previously published results and the validated automated patch clamp assay. Many of the 39 previously unstudied disease-associated KCNQ2 variants exhibited prominent loss-of-function and dominant-negative effects, providing strong evidence in support of pathogenicity. All variants, exhibit response to retigabine (10 μM), although there were differences in maximal responses. Variants within the ion selectivity filter exhibited the weakest responses whereas retigabine had the strongest effect on gain-of-function variants in the voltage-sensor domain. Our study established a high throughput method to detect deleterious functional consequences of KCNQ2 variants. We demonstrated that dominant-negative loss-of-function is a common mechanism associated with missense KCNQ2 variants but this does not occur with rare population variation in this gene. Importantly, we observed genotype-dependent differences in the response of KCNQ2 variants to retigabine.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ji-Jie Pang ◽  
Fan Gao ◽  
Samuel M. Wu

A chemical synapse is either an action potential (AP) synapse or a graded potential (GP) synapse but not both. This study investigated how signals passed the glutamatergic synapse between the rod photoreceptor and its postsynaptic hyperpolarizing bipolar cells (HBCs) and light responses of retinal neurons with dual-cell and single-cell patch-clamp recording techniques. The results showed that scotopic lights evoked GPs in rods, whose depolarizing Phase 3 associated with the light offset also evoked APs of a duration of 241.8 ms and a slope of 4.5 mV/ms. The depolarization speed of Phase 3 (Speed) was 0.0001–0.0111 mV/ms and 0.103–0.469 mV/ms for rods and cones, respectively. On pairs of recorded rods and HBCs, only the depolarizing limbs of square waves applied to rods evoked clear currents in HBCs which reversed at −6.1 mV, indicating cation currents. We further used stimuli that simulated the rod light response to stimulate rods and recorded the rod-evoked excitatory current (rdEPSC) in HBCs. The normalized amplitude (R/Rmax), delay, and rising slope of rdEPSCs were differentially exponentially correlated with the Speed (all p < 0.001). For the Speed < 0.1 mV/ms, R/Rmax grew while the delay and duration reduced slowly; for the Speed between 0.1 and 0.4 mV/ms, R/Rmax grew fast while the delay and duration dramatically decreased; for the Speed > 0.4 mV/ms, R/Rmax reached the plateau, while the delay and duration approached the minimum, resembling digital signals. The rdEPSC peak was left-shifted and much faster than currents in rods. The scotopic-light-offset-associated major and minor cation currents in retinal ganglion cells (RGCs), the gigantic excitatory transient currents (GTECs) in HBCs, and APs and Phase 3 in rods showed comparable light-intensity-related locations. The data demonstrate that the rod-HBC synapse is a perfect synapse that can differentially decode and code analog and digital signals to process enormously varied rod and coupled-cone inputs.


Nature ◽  
2021 ◽  
Vol 598 (7879) ◽  
pp. 151-158 ◽  
Author(s):  
Jim Berg ◽  
Staci A. Sorensen ◽  
Jonathan T. Ting ◽  
Jeremy A. Miller ◽  
Thomas Chartrand ◽  
...  

AbstractThe neocortex is disproportionately expanded in human compared with mouse1,2, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth3. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues. We demonstrate a strong correspondence between morphological, physiological and transcriptomic phenotypes of five human glutamatergic supragranular neuron types. These were enriched in but not restricted to layers, with one type varying continuously in all phenotypes across layers 2 and 3. The deep portion of layer 3 contained highly distinctive cell types, two of which express a neurofilament protein that labels long-range projection neurons in primates that are selectively depleted in Alzheimer’s disease4,5. Together, these results demonstrate the explanatory power of transcriptomic cell-type classification, provide a structural underpinning for increased complexity of cortical function in humans, and implicate discrete transcriptomic neuron types as selectively vulnerable in disease.


2021 ◽  
Author(s):  
Zeinab Jahed ◽  
Yang Yang ◽  
Ching-Ting Tsai ◽  
Ethan P. Foster ◽  
Allister F. McGuire ◽  
...  

Drug-induced cardiotoxicity arises primarily when a compound alters the electrophysiological properties of cardiomyocytes. Features of intracellular action potentials (iAPs) are powerful biomarkers that predict proarrhythmic risks. However, the conventional patch clamp techniques for measuring iAPs are either laborious and low throughput or not suitable for measuring electrically connected cardiomyocytes. In the last decade, a number of vertical nanoelectrodes have been demonstrated to achieve parallel and minimally-invasive iAP recordings. Nanoelectrodes show great promise, but the large variability in success rate, signal strength, and the low throughput of device fabrication have hindered them from being broadly adopted for proarrhythmia drug assessment. In this work, we developed vertically-aligned and semi-hollow nanocrown electrodes that are mechanically robust and made through a scalable fabrication process. Nanocrown electrodes achieve >99% success rates in obtaining intracellular access through electroporation, allowing reliable recordings of iAPs from human pluripotent stem-cell-derived cardiomyocytes (hPSC-CMs). The accuracy of nanocrown electrode recordings is validated by simultaneous patch clamp recording from the same cell. Nanocrown electrodes enable prolonged iAP recording for continual monitoring of the same cells upon the sequential addition of four to five incremental drug doses. In this way, the dose-response data is self-referencing, which avoids the cell-to-cell variations inherent to hPSC-CMs. We are hopeful that this technology development is a step towards establishing an iAP screening assay for preclinical evaluation of drug-induced arrhythmogenicity.


2021 ◽  
Vol 22 (17) ◽  
pp. 9636
Author(s):  
Daisuke Uta ◽  
Tsuyoshi Hattori ◽  
Megumu Yoshimura

To elucidate why naftopidil increases the frequency of spontaneous synaptic currents in only some substantia gelatinosa (SG) neurons, post-hoc analyses were performed. Blind patch-clamp recording was performed using slice preparations of SG neurons from the spinal cords of adult rats. Spontaneous inhibitory and excitatory postsynaptic currents (sIPSCs and sEPSCs, respectively) were recorded. The ratios of the frequency and amplitude of the sIPSCs and sEPSCs following the introduction of naftopidil compared with baseline, and after the application of naftopidil, serotonin (5-HT), and prazosin, compared with noradrenaline (NA) were evaluated. First, the sIPSC analysis indicated that SG neurons reached their full response ratio for NA at 50 μM. Second, they responded to 5-HT (50 μM) with a response ratio similar to that for NA, but prazosin (10 μM) did not change the sEPSCs and sIPSCs. Third, the highest concentration of naftopidil (100 μM) led to two types of response in the SG neurons, which corresponded with the reactions to 5-HT and prazosin. These results indicate that not all neurons were necessarily activated by naftopidil, and that the micturition reflex may be regulated in a sophisticated manner by inhibitory mechanisms in these interneurons.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Jerry Wang ◽  
Aizhu Lu ◽  
Ying Xia ◽  
Hongwei Wang ◽  
Cagla Cimenci ◽  
...  

Background: Wnt signaling plays a critical role in both embryonic cardiogenesis and cardiac remodeling in adult heart disease. We have previously demonstrated that the canonical Wnt/β-catenin pathway inhibits cardiac sodium current, but it remains unclear whether the noncanonical Wnt pathway affects cardiac electrophysiology. Methods and Results: Western blot analysis of ventricular tissues from patients with heart failure (n=6) demonstrated a 2.3x fold increase (p<0.01) in the protein level of Wnt5a, a noncanonical Wnt ligand, as compared to healthy ventricular tissues (n=5). To investigate if Wnt5a affects cardiac electrophysiology, adenovirus expressing Wnt5a and mCherry (Ad-Wnt5a) or control adenovirus expressing mCherry only (Ad-mCherry) was injected into the left ventricular free wall of adult rat hearts. At 4-5 days after virus injection, surface ECG revealed increased QT interval (p<0.01) in Ad-Wn5a-injected rats (90.1±2.3 ms n=7, vs 72.3±2.0 ms in control Ad-mCherry rats n=7). In addition, ventricular tachycardia was induced by programmed electrical stimulation in 92% (11/12) Ad-Wnt5a hearts, but only in 22% (2/9) control Ad-mCherry hearts (p<0.01). Patch-clamp recording of isolated single ventricular myocytes demonstrated that Ad-Wnt5a myocytes exhibited marked prolongation of action potential duration (APD 90 : 273±77ms, n=5) as compared to control cells (42±12 ms, n=7, p<0.05). In addition, the prolonged action potentials in Ad-Wnt5a myocytes were associated with frequent early afterdepolarizations and delayed afterdepolarizations, two mechanisms for triggered ventricular arrhythmias. Conclusion: Wnt5a is increased in the myocardium of patients with heart failure. Viral expression of Wnt5a in rat ventricular tissue increases QT interval and ventricular arrhythmia susceptibility, which is associated with prolongation of action potentials in cardiomyocytes. This may be an important target for future therapies.


Sign in / Sign up

Export Citation Format

Share Document