Complete Convergence and the Law of Large Numbers

1983 ◽  
pp. 229-240 ◽  
Author(s):  
P. L. Hsu ◽  
Herbert Robbins
2017 ◽  
Vol 96 (2) ◽  
pp. 333-344
Author(s):  
ALLAN GUT ◽  
ULRICH STADTMÜLLER

The present paper is devoted to complete convergence and the strong law of large numbers under moment conditions near those of the law of the single logarithm (LSL) for independent and identically distributed arrays. More precisely, we investigate limit theorems under moment conditions which are stronger than $2p$ for any $p<2$, in which case we know that there is almost sure convergence to 0, and weaker than $E\,X^{4}/(\log ^{+}|X|)^{2}<\infty$, in which case the LSL holds.


1997 ◽  
Vol 30 (7) ◽  
pp. 4257-4266 ◽  
Author(s):  
Tien-Chung Hu ◽  
Hen-Chao Chang

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Jing Chen ◽  
Zengjing Chen

Abstract In this article, we employ the elementary inequalities arising from the sub-linearity of Choquet expectation to give a new proof for the generalized law of large numbers under Choquet expectations induced by 2-alternating capacities with mild assumptions. This generalizes the Linderberg–Feller methodology for linear probability theory to Choquet expectation framework and extends the law of large numbers under Choquet expectation from the strong independent and identically distributed (iid) assumptions to the convolutional independence combined with the strengthened first moment condition.


2006 ◽  
Vol 73 (4) ◽  
pp. 673-686 ◽  
Author(s):  
M. A. Milevsky ◽  
S. D. Promislow ◽  
V. R. Young

Sign in / Sign up

Export Citation Format

Share Document