moment condition
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 34)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 53 (4) ◽  
pp. 1023-1060
Author(s):  
Mátyás Barczy ◽  
Sandra Palau ◽  
Gyula Pap

AbstractUnder a fourth-order moment condition on the branching and a second-order moment condition on the immigration mechanisms, we show that an appropriately scaled projection of a supercritical and irreducible continuous-state and continuous-time branching process with immigration on certain left non-Perron eigenvectors of the branching mean matrix is asymptotically mixed normal. With an appropriate random scaling, under some conditional probability measure, we prove asymptotic normality as well. In the case of a non-trivial process, under a first-order moment condition on the immigration mechanism, we also prove the convergence of the relative frequencies of distinct types of individuals on a suitable event; for instance, if the immigration mechanism does not vanish, then this convergence holds almost surely.


Author(s):  
Heng-Qing Ye ◽  
David D. Yao

In a prior study [Ye HQ, Yao DD (2016) Diffusion limit of fair resource control–Stationary and interchange of limits. Math. Oper. Res. 41(4):1161–1207.] focusing on a class of stochastic processing network with fair resource control, we justified the diffusion approximation (in the context of the interchange of limits) provided that the pth moment of the workloads are bounded. To this end, we introduced the so-called bounded workload condition, which requires the workload process be bounded by a free process plus the initial workload. This condition is for a derived process, the workload, as opposed to primitives such as arrival processes and service requirements; as such, it could be difficult to verify. In this paper, we establish the interchange of limits under a moment condition of suitable order on the primitives directly: the required order is [Formula: see text] on the moments of the primitive processes so as to bound the pth moment of the workload. This moment condition is trivial to verify, and indeed automatically holds in networks where the primitives have moments of all orders, for instance, renewal arrivals with phase-type interarrival times and independent and identically distributed phase-type service times.


2021 ◽  
Author(s):  
Alessandro Palandri

Abstract The paper derives four conditions which guarantee rank–invariance, i.e. that the empirical rankings (based on measurement error–affected variance proxies) of competing volatility forecasts be consistent with the true rankings (based on the unobservable conditional variance). The first three establish bounds beyond which the separation between the forecasts is enough for their rankings not to be affected by the measurement error. The conditions’ ability to establish rank-invariance with respect to forecast characteristics, such as bias, variance and correlation, is studied via Monte Carlo simulations. An additional moment condition identifies the functional forms of the triplet {model, estimation criterion, loss} for which the effects of measurement errors on the rankings cancel altogether. Both theoretical and empirical results show the extension of admissible loss functions achieving ranking consistency in forecast evaluations.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 829
Author(s):  
Amor Keziou ◽  
Aida Toma

In this paper, we introduce a robust version of the empirical likelihood estimator for semiparametric moment condition models. This estimator is obtained by minimizing the modified Kullback–Leibler divergence, in its dual form, using truncated orthogonality functions. We prove the robustness and the consistency of the new estimator. The performance of the robust empirical likelihood estimator is illustrated through examples based on Monte Carlo simulations.


2021 ◽  
Author(s):  
Alexander Chudik ◽  
M. Hashem Pesaran ◽  
Alessandro Rebucci

AbstractThis paper estimates time-varying COVID-19 reproduction numbers worldwide solely based on the number of reported infected cases, allowing for under-reporting. Estimation is based on a moment condition that can be derived from an agent-based stochastic network model of COVID-19 transmission. The outcomes in terms of the reproduction number and the trajectory of per-capita cases through the end of 2020 are very diverse. The reproduction number depends on the transmission rate and the proportion of susceptible population, or the herd immunity effect. Changes in the transmission rate depend on changes in the behavior of the virus, re-flecting mutations and vaccinations, and changes in people’s behavior, reflecting voluntary or government mandated isolation. Over our sample period, neither mutation nor vaccination are major factors, so one can attribute variation in the transmission rate to variations in behavior. Evidence based on panel data models explaining transmission rates for nine European countries indicates that the diversity of outcomes resulted from the non-linear interaction of mandatory containment measures, voluntary precautionary isolation, and the economic incentives that gov-ernments provided to support isolation. These effects are precisely estimated and robust to various assumptions. As a result, countries with seemingly different social distancing policies achieved quite similar outcomes in terms of the reproduction number. These results imply that ignoring the voluntary component of social distancing could introduce an upward bias in the estimates of the effects of lock-downs and support policies on the transmission rates.JEL ClassificationD0, F6, C4, I120, E7


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tatpon Siripraparat ◽  
Kritsana Neammanee

AbstractLet $X_{1}, X_{2}, \ldots , X_{n}$ X 1 , X 2 , … , X n be independent integral-valued random variables, and let $S_{n}=\sum_{j=1}^{n}X_{j}$ S n = ∑ j = 1 n X j . One of the interesting probabilities is the probability at a particular point, i.e., the density of $S_{n}$ S n . The theorem that gives the estimation of this probability is called the local limit theorem. This theorem can be useful in finance, biology, etc. Petrov (Sums of Independent Random Variables, 1975) gave the rate $O (\frac{1}{n} )$ O ( 1 n ) of the local limit theorem with finite third moment condition. Most of the bounds of convergence are usually defined with the symbol O. Giuliano Antonini and Weber (Bernoulli 23(4B):3268–3310, 2017) were the first who gave the explicit constant C of error bound $\frac{C}{\sqrt{n}}$ C n . In this paper, we improve the convergence rate and constants of error bounds in local limit theorem for $S_{n}$ S n . Our constants are less complicated than before, and thus easy to use.


2021 ◽  
Vol 179 (3-4) ◽  
pp. 1145-1181 ◽  
Author(s):  
Sebastian Andres ◽  
Alberto Chiarini ◽  
Martin Slowik

AbstractWe establish a quenched local central limit theorem for the dynamic random conductance model on $${\mathbb {Z}}^d$$ Z d only assuming ergodicity with respect to space-time shifts and a moment condition. As a key analytic ingredient we show Hölder continuity estimates for solutions to the heat equation for discrete finite difference operators in divergence form with time-dependent degenerate weights. The proof is based on De Giorgi’s iteration technique. In addition, we also derive a quenched local central limit theorem for the static random conductance model on a class of random graphs with degenerate ergodic weights.


2021 ◽  
pp. 1-24
Author(s):  
Lorenzo Camponovo ◽  
Yukitoshi Matsushita ◽  
Taisuke Otsu

This paper develops a new test statistic for parameters defined by moment conditions that exhibits desirable relative error properties for the approximation of tail area probabilities. Our statistic, called the tilted exponential tilting (TET) statistic, is constructed by estimating certain cumulant generating functions under exponential tilting weights. We show that the asymptotic p-value of the TET statistic can provide an accurate approximation to the p-value of an infeasible saddlepoint statistic, which admits a Lugannani–Rice style adjustment with relative errors of order n−1 both in normal and large deviation regions. Numerical results illustrate the accuracy of the proposed TET statistic. Our results cover both just- and overidentified moment condition models. A limitation of our analysis is that the theoretical approximation results are exclusively for the infeasible saddlepoint statistic, and closeness of the p-values for the infeasible statistic to the ones for the feasible TET statistic is only numerically assessed.


2021 ◽  
Vol 14 (1) ◽  
pp. 39
Author(s):  
Linh Pham

Rising concerns over climate change have increased investors’ and policymakers’ interests in environmentally friendly investments, which have led to the rapid expansion of the green equity market recently. Previous studies have focused on analyzing the green equity market at the aggregate level, thereby overlooking the heterogeneity across green equity sub-sectors. This paper contributes to the literature by investigating how interdependence between green equity markets and other financial assets varies across regions, market conditions, and investment horizons. To this end, the paper employs the recently developed cross-quantilogram framework, which measures the cross-quantile dependence across time series without any moment condition requirement. The results show that within the green equity market, movements in the U.S. market can predict movements in the Asian and European markets during all market conditions. In contrast, the Asian and European green equity markets only predict movements in the U.S. market during bearish periods. The paper also finds that regional green equity markets respond differently to movements in other financial assets, such as energy commodity and general stock returns. In addition, the interdependence among regional green equity and other assets varies across market conditions and investment horizons. These results have important implications for environmentally friendly investors and policymakers.


2021 ◽  
Vol 9 (1) ◽  
pp. 65-89
Author(s):  
Zhenzhen Yang ◽  
Yajuan Yang ◽  
Jiawei Sun ◽  
Baode Li

Abstract Let p(·) : ℝ n → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝ n introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp (·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp (Θ) on ℝ n with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp (·)(Θ) to Lp (·)(ℝ n ) in general and from Hp (·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp (Θ).


Sign in / Sign up

Export Citation Format

Share Document