Deformations of Complex Structures on a Real Lie Algebra

1993 ◽  
pp. 377-385
Author(s):  
Giuliana Gigante ◽  
Giuseppe Tomassini
1992 ◽  
Vol 44 (2) ◽  
pp. 225-233
Author(s):  
Takao Akahori

AbstractWe extend the famous Kodaira-Spencer's completeness theorem for a family of deformations of complex structures (see [12]). As an application, we show that the canonical family constructed in [9] is versai.


2019 ◽  
Vol 28 (4) ◽  
pp. 773-815 ◽  
Author(s):  
Kefeng Liu ◽  
Sheng Rao ◽  
Xueyuan Wan

ISRN Algebra ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-16
Author(s):  
Louis Magnin

We prove that any zero torsion linear map on a nonsolvable real Lie algebra is an extension of some CR-structure. We then study the cases of (2, ) and the 3-dimensional Heisenberg Lie algebra . In both cases, we compute up to equivalence all zero torsion linear maps on , and deduce an explicit description of the equivalence classes of integrable complex structures on .


2018 ◽  
Vol 5 (1) ◽  
pp. 150-157
Author(s):  
Takumi Yamada

AbstractLet g = a+b be a Lie algebra with a direct sum decomposition such that a and b are Lie subalgebras. Then, we can construct an integrable complex structure J̃ on h = ℝ(gℂ) from the decomposition, where ℝ(gℂ) is a real Lie algebra obtained from gℂby the scalar restriction. Conversely, let J̃ be an integrable complex structure on h = ℝ(gℂ). Then, we have a direct sum decomposition g = a + b such that a and b are Lie subalgebras. We also investigate relations between the decomposition g = a + b and dim Hs.t∂̄J̃ (hℂ).


2018 ◽  
Vol 61 (3) ◽  
pp. 588-607 ◽  
Author(s):  
Honglei Lang ◽  
Yunhe Sheng ◽  
Aïssa Wade

AbstractIn this paper, we first discuss the relation between VB-Courant algebroids and E-Courant algebroids, and we construct some examples of E-Courant algebroids. Then we introduce the notion of a generalized complex structure on an E-Courant algebroid, unifying the usual generalized complex structures on even-dimensional manifolds and generalized contact structures on odd-dimensional manifolds. Moreover, we study generalized complex structures on an omni-Lie algebroid in detail. In particular, we show that generalized complex structures on an omni-Lie algebra gl(V) ⊕ V correspond to complex Lie algebra structures on V.


2015 ◽  
Vol 26 (11) ◽  
pp. 1550096 ◽  
Author(s):  
Rutwig Campoamor Stursberg ◽  
Isolda E. Cardoso ◽  
Gabriela P. Ovando

We study the problem of extending a complex structure to a given Lie algebra 𝔤, which is firstly defined on an ideal 𝔥 ⊂ 𝔤. We consider the next situations: 𝔥 is either complex or it is totally real. The next question is to equip 𝔤 with an additional structure, such as a (non)-definite metric or a symplectic structure and to ask either 𝔥 is non-degenerate, isotropic, etc. with respect to this structure, by imposing a compatibility assumption. We show that this implies certain constraints on the algebraic structure of 𝔤. Constructive examples illustrating this situation are shown, in particular computations in dimension six are given.


Sign in / Sign up

Export Citation Format

Share Document