AbstractAction theory may be regarded as a theoretical foundation of AI, because it provides in a logically coherent way the principles of performing actions by agents. But, more importantly, action theory offers a formal ontology mainly based on set-theoretic constructs. This ontology isolates various types of actions as structured entities: atomic, sequential, compound, ordered, situational actions etc., and it is a solid and non-removable foundation of any rational activity. The paper is mainly concerned with a bunch of issues centered around the notion of performability of actions. It seems that the problem of performability of actions, though of basic importance for purely practical applications, has not been investigated in the literature in a systematic way thus far. This work, being a companion to the book as reported (Czelakowski in Freedom and enforcement in action. Elements of formal action theory, Springer 2015), elaborates the theory of performability of actions based on relational models and formal constructs borrowed from formal lingusistics. The discussion of performability of actions is encapsulated in the form of a strict logical system "Equation missing". This system is semantically defined in terms of its intended models in which the role of actions of various types (atomic, sequential and compound ones) is accentuated. Since due to the nature of compound actions the system "Equation missing" is not finitary, other semantic variants of "Equation missing" are defined. The focus in on the system "Equation missing" of performability of finite compound actions. An adequate axiom system for "Equation missing" is defined. The strong completeness theorem is the central result. The role of the canonical model in the proof of the completeness theorem is highlighted. The relationship between performability of actions and dynamic logic is also discussed.