contact structures
Recently Published Documents


TOTAL DOCUMENTS

437
(FIVE YEARS 53)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Vol 9 ◽  
Author(s):  
Haoyu Dong ◽  
Jiading Wang ◽  
Dengfei Zhang ◽  
Yuanjun Xu ◽  
Zhenxiao Li

The angle of repose in soil particles plays a key role in slope stability. There was a need for the investigation on the association between the angle of repose in loess particles and the angle of slopes. The fixed funnel methods with different particle sizes were carried out. The pressure of particle gravity weight was obtained based on the vibration stacking test. Four contact structures in loess particles were put forward including the triangular pyramid contact structure (TS), rectangular pyramid contact structure (RS), pentagonal pyramid contact structure (PS), and hexagon contact structure (HS). The particles transformed successively in four kinds of contact structures. The transformation of entropy value of the particles in different accumulation areas was discussed during the process of accumulation. The relationship between the natural angle of repose and the evolution of the contact structures was established. Combined with the existing experimental conclusion that loess particles transform in four stable states, in turn, the reason that the friction angle of uniform sand particles proposed by Shields in 1936 is 33° was explained. The formation theory of the loess angle of repose was well extended to speculate the formation process of the loess slope system. It is verified that loess slopes were mainly distributed under 30°.


2022 ◽  
Vol 275 (1350) ◽  
Author(s):  
Çağatay Kutluhan ◽  
Steven Sivek ◽  
C. Taubes

We show that sutured embedded contact homology is a natural invariant of sutured contact 3 3 -manifolds which can potentially detect some of the topology of the space of contact structures on a 3 3 -manifold with boundary. The appendix, by C. H. Taubes, proves a compactness result for the completion of a sutured contact 3 3 -manifold in the context of Seiberg–Witten Floer homology, which enables us to complete the proof of naturality.


2021 ◽  
Vol 103 (11) ◽  
pp. 410-413
Author(s):  
Bakhtier Teshaevich Mardonov ◽  
◽  
Zhamshid Ravshanovich Ravshanov ◽  

2021 ◽  
pp. 1-47
Author(s):  
MARTIN MION-MOUTON

Abstract In this paper, we classify the three-dimensional partially hyperbolic diffeomorphisms whose stable, unstable, and central distributions $E^s$ , $E^u$ , and $E^c$ are smooth, such that $E^s\oplus E^u$ is a contact distribution, and whose non-wandering set equals the whole manifold. We prove that up to a finite quotient or a finite power, they are smoothly conjugated either to a time-map of an algebraic contact-Anosov flow, or to an affine partially hyperbolic automorphism of a nil- ${\mathrm {Heis}}{(3)}$ -manifold. The rigid geometric structure induced by the invariant distributions plays a fundamental part in the proof.


2021 ◽  
Author(s):  
Tasnuva Farheen ◽  
Ulbert Botero ◽  
Nitin Varshney ◽  
Damon L. Woodard ◽  
Mark Tehranipoor ◽  
...  

Abstract IC camouflaging has been proposed as a promising countermeasure against malicious reverse engineering. Camouflaged gates contain multiple functional device structures, but appear as one single layout under microscope imaging, thereby hiding the real circuit functionality from adversaries. The recent covert gate camouflaging design comes with a significantly reduced overhead cost, allowing numerous camouflaged gates in circuits and thus being resilient against various invasive and semi-invasive attacks. Dummy inputs are used in the design, but SEM imaging analysis was only performed on simplified dummy contact structures in prior work. Whether the e-beam during SEM imaging will charge differently on different contacts and further reveal the different structures or not requires extended research. In this study, we fabricated real and dummy contacts in various structures and performed a systematic SEM imaging analysis to investigate the possible charging and the consequent passive voltage contrast on contacts. In addition, machine-learning based pattern recognition was also employed to examine the possibility of differentiating real and dummy contacts. Based on our experimental results, we found that the difference between real and dummy contacts is insignificant in SEM imaging, which effectively prevents adversarial SEM-based reverse engineering. Index Terms—Reverse Engineering, IC Camouflaging, Scanning Electron Microscopy, Machine Learning, Countermeasure.


2021 ◽  
Vol 4 ◽  
pp. 1103-1141
Author(s):  
Patrick Foulon ◽  
Boris Hasselblatt ◽  
Anne Vaugon
Keyword(s):  

2021 ◽  
Vol 230 ◽  
pp. 111254
Author(s):  
AnYao Liu ◽  
Zhongshu Yang ◽  
Frank Feldmann ◽  
Jana-Isabelle Polzin ◽  
Bernd Steinhauser ◽  
...  

2021 ◽  
Author(s):  
Angelique Burdinski ◽  
Dirk Brockmann ◽  
Benjamin F Maier

Digital contact tracing applications have been introduced in many countries to aid in the containment of COVID-19 outbreaks. Initially, enthusiasm was high regarding their implementation as a non-pharmaceutical intervention (NPI). Yet, no country was able to prevent larger outbreaks without falling back to harsher NPIs, and the total effect of digital contact tracing remains elusive. Based on the results of empirical studies and modeling efforts, we show that digital contact tracing apps might have prevented cases on the order of single-digit percentages up until now, at best. We show that this poor impact can be attributed to a combination of low participation rates, a non-flexible reliance on symptom-based testing, low engagement of participants, and delays between testing and test result upload. We find that contact tracing does not change the epidemic threshold and exclusively prevents more cases during the supercritical phase of an epidemic, making it unfit as a tool to prevent outbreaks. Locally clustered contact structures may increase the intervention's efficacy, but only if the number of contacts per individual is homogeneously distributed, a condition usually not found in contact networks. Our results suggest that policy makers cannot rely on digital contact tracing to contain outbreaks of COVID-19 or similar diseases.


Sign in / Sign up

Export Citation Format

Share Document