Botulinum Toxin Treatment of Chronic Facial Pain: Trigeminal Neuralgia, Temporomandibular Disorders, and Dental-Related Pain

Author(s):  
Bahman Jabbari
Author(s):  
Kyung-Hwan Kwon ◽  
Kyung Su Shin ◽  
Sung Hee Yeon ◽  
Dae Gun Kwon

Abstract Botulinum toxin (BTX) is used in various ways such as temporarily resolving muscular problems in musculoskeletal temporomandibular disorders, inducing a decrease in bruxism through a change in muscular patterns in a patient’s bruxism, and solving problems in patients with tension headache. And also, BTX is widely used in cosmetic applications for the treatment of facial wrinkles after local injection, but conditions such as temporomandibular joint disorders, headache, and neuropathic facial pain could be treated with this drug. In this report, we will discuss the clinical use of BTX for facial wrinkle, intraoral ulcer, and cranio-maxillofacial pain with previous studies and share our case.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 605
Author(s):  
Kazuya Yoshida

The differences in analgesic effects of botulinum toxin type A were compared in 28 patients with trigeminal neuralgia, 53 patients with myofascial temporomandibular disorders, and 89 patients with the jaw closing oromandibular dystonia. The patients were treated by injection of botulinum toxin type A into the masseter, temporalis, medial pterygoid, and other muscles based on the symptoms of each patient. The pain severity was evaluated using the visual analog scale, pain frequency, and pain scale of the oromandibular dystonia rating scale. Botulinum toxin injection was performed 1068 times in all patients without significant adverse effects. The visual analog, pain frequency, and pain scales at baseline were reduced (p < 0.001) after two, four, eight, and 12 weeks after the first botulinum toxin therapy and at the endpoint. The effects differed significantly (p < 0.001) among the groups (repeated-measures analysis of variance). The mean improvement (0%, no effect; 100%, complete recovery) at the endpoint was 86.8% for trigeminal neuralgia, 80.8% for myofascial pain, and 75.4% for oromandibular dystonia. Injection of the botulinum toxin can be a highly effective and safe method to treat trigeminal neuralgia, myofascial pain, and oromandibular dystonia.


2011 ◽  
Vol 2 (4) ◽  
pp. 152-157
Author(s):  
Joanna M Zakrzewska

Neurological conditions that cause oral and facial pain are relatively rare but must be distinguished from dental and temporomandibular disorders as their management can be complex and may require referral to the secondary care sector. The most common neuralgia is trigeminal neuralgia with other rarer conditions including post herpetic neuralgia and glossopharyngeal neuralgia.


2021 ◽  
pp. rapm-2020-102285
Author(s):  
Pascal SH Smulders ◽  
Michel AMB Terheggen ◽  
José W Geurts ◽  
Jan Willem Kallewaard

BackgroundTrigeminal neuralgia (TN) has the highest incidence of disorders causing facial pain. TN is provoked by benign stimuli, like shaving, leading to severe, short-lasting pain. Patients are initially treated using antiepileptic drugs; however, multiple invasive options are available when conservative treatment proves insufficient. Percutaneous radiofrequency treatment of the trigeminal, or gasserian, ganglion (RF-G) is a procedure regularly used in refractory patients with comorbidities. RF-G involves complex needle maneuvering to perform selective radiofrequency heat treatment of the affected divisions. We present a unique case of cranial nerve 4 (CN4) paralysis after RF-G.Case presentationA male patient in his 60s presented with sharp left-sided facial pain and was diagnosed with TN, attributed to the maxillary and mandibular divisions. MRI showed a vascular loop of the anterior inferior cerebellar artery without interference of the trigeminal complex. The patient opted for RF-G after inadequate conservative therapy. The procedure was performed by an experienced pain physician and guided by live fluoroscopy. The patient was discharged without problems but examined the following day for double vision. Postprocedural MRI showed enhanced signaling between the trigeminal complex and the brainstem. Palsy of CN4 was identified by a neurologist, and spontaneous recovery followed 5 months after the procedure.ConclusionsMention of postprocedural diplopia in guidelines is brief, and the exact incidence remains unknown. Different mechanisms for cranial nerve (CN) palsy have been postulated: incorrect technique, anatomical variations, and secondary heat injury. We observed postprocedural hemorrhage and hypothesized that bleeding might be a contributing factor in injury of CNs after RF-G.


Sign in / Sign up

Export Citation Format

Share Document