Fluorescence in situ Hybridization with Bacterial Artificial Chromosomes (BACs) to Mitotic Heterochromatin of Drosophila

Author(s):  
Maria Carmela Accardo ◽  
Patrizio Dimitri
Genome ◽  
1997 ◽  
Vol 40 (4) ◽  
pp. 475-478 ◽  
Author(s):  
Martha I. Gómez ◽  
M. Nurul Islam-Faridi ◽  
Sung-Sick Woo ◽  
Don Czeschin Jr. ◽  
Michael S. Zwick ◽  
...  

Fluorescence in situ hybridization (FISH) of a 205 kb Sorghum bicolor bacterial artificial chromosome (BAC) containing a sequence complementary to maize sh2 cDNA produced a large pair of FISH signals at one end of a midsize metacentric chromosome of S. bicolor. Three pairs of signals were observed in metaphase spreads of chromosomes of a sorghum plant containing an extra copy of one arm of the sorghum chromosome arbitrarily designated with the letter D. Therefore, the sequence cloned in this BAC must reside in the arm of chromosome D represented by this monotelosome. This demonstrates a novel procedure for physically mapping cloned genes or other single-copy sequences by FISH, sh2 in this case, by using BACs containing their complementary sequences. The results reported herein suggest homology, at least in part, between one arm of chromosome D in sorghum and the long arm of chromosome 3 in maize.Key words: sorghum, maize, shrunken locus, physical mapping, fluorescence in situ hybridization, bacterial artificial chromosomes.


1994 ◽  
Vol 65 (1-2) ◽  
pp. 108-110 ◽  
Author(s):  
S.K. Bohlander ◽  
R. Espinosa III ◽  
A.A. Fernald ◽  
J.D. Rowley ◽  
M.M. Le Beau ◽  
...  

Blood ◽  
1995 ◽  
Vol 85 (8) ◽  
pp. 2132-2138 ◽  
Author(s):  
ML Veronese ◽  
M Ohta ◽  
J Finan ◽  
PC Nowell ◽  
CM Croce

Translocations involving chromosome 8 at band q24 and one of the Ig loci on chromosomes 14q32, 22q11, and 2p11 are the hallmark of Burkitt's lymphoma (BL). It has been previously observed that the exact localization of the breakpoints at chromosome 8q24 can vary significantly from patient to patient, scattering over a distance of more than 300 kb upstream of c-myc and about 300 kb downstream of c-myc. To generate probes for fluorescence in situ hybridization (FISH) that detect most c-myc translocations, we screened a yeast artificial chromosome (YAC) library from normal human lymphocytes by colony hybridization, using three markers surrounding the c-myc gene as probes. We obtained 10 YAC clones ranging in size between 500 and 200 kb. Two nonchimeric clones were used for FISH on several BL cell lines and patient samples with different breakpoints at 8q24. Our results show that the YAC clones detected translocations scattered along approximately 200 kb in both metaphase chromosomes and interphase nuclei. The sensitivity, rapidity, and feasibility in nondividing cells render FISH an important diagnostic tool. Furthermore, the use of large DNA fragments such as YACs greatly simplifies the detection of translocations with widely scattered breakpoints such as these seen in BL.


Author(s):  
Audrey Basinko ◽  
Nathalie Douet-Guilbert ◽  
Severine Audebert-Bellanger ◽  
Philippe Parent ◽  
Clemence Chabay-Vichot ◽  
...  

Genome ◽  
2004 ◽  
Vol 47 (4) ◽  
pp. 764-768 ◽  
Author(s):  
Janice Pagel ◽  
Jason G Walling ◽  
Nevin D Young ◽  
Randy C Shoemaker ◽  
Scott A Jackson

Soybean (Glycine max L. Merr.) is presumed to be an ancient polyploid based on chromosome number and multiple RFLP fragments in genetic mapping. Direct cytogenetic observation of duplicated regions within the soybean genome has not heretofore been reported. Employing flourescence in situ hybridization (FISH) of genetically anchored bacterial artificial chromosomes (BACs) in soybean, we were able to observe that the distal ends of molecular linkage group E had duplicated regions on linkage groups A2 and B2. Further, using fiber-FISH, it was possible to measure the molecular size and organization of one of the duplicated regions. As FISH did not require repetitive DNA for blocking fluorescence signals, we assume that the 200-kb genome region is relatively low in repetitive sequences. This observation, along with the observation that the BACs are located in distal euchromatin regions, has implications for genome structure/evolution and the approach used to sequence the soybean genome.Key words: soybean, genome evolution, FISH, chromosomes, physical mapping.


Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 833-838 ◽  
Author(s):  
Scott A Jackson ◽  
Zhukuan Cheng ◽  
Ming Li Wang ◽  
Howard M Goodman ◽  
Jiming Jiang

Abstract Comparative genome studies are important contributors to our understanding of genome evolution. Most comparative genome studies in plants have been based on genetic mapping of homologous DNA loci in different genomes. Large-scale comparative physical mapping has been hindered by the lack of efficient and affordable techniques. We report here the adaptation of fluorescence in situ hybridization (FISH) techniques for comparative physical mapping between Arabidopsis thaliana and Brassica rapa. A set of six bacterial artificial chromosomes (BACs) representing a 431-kb contiguous region of chromosome 2 of A. thaliana was mapped on both chromosomes and DNA fibers of B. rapa. This DNA fragment has a single location in the A. thaliana genome, but hybridized to four to six B. rapa chromosomes, indicating multiple duplications in the B. rapa genome. The sizes of the fiber-FISH signals from the same BACs were not longer in B. rapa than those in A. thaliana, suggesting that this genomic region is duplicated but not expanded in the B. rapa genome. The comparative fiber-FISH mapping results support that chromosomal duplications, rather than regional expansion due to accumulation of repetitive sequences in the intergenic regions, played the major role in the evolution of the B. rapa genome.


Sign in / Sign up

Export Citation Format

Share Document