scholarly journals Catch-linker + PCR labeling: a simple method to generate fluorescence in situ hybridization probes from yeast artificial chromosomes.

1995 ◽  
Vol 4 (4) ◽  
pp. 209-211 ◽  
Author(s):  
Y Shibasaki ◽  
J C Maule ◽  
R S Devon ◽  
E M Slorach ◽  
J R Gosden ◽  
...  
1994 ◽  
Vol 65 (1-2) ◽  
pp. 108-110 ◽  
Author(s):  
S.K. Bohlander ◽  
R. Espinosa III ◽  
A.A. Fernald ◽  
J.D. Rowley ◽  
M.M. Le Beau ◽  
...  

Blood ◽  
1995 ◽  
Vol 85 (8) ◽  
pp. 2132-2138 ◽  
Author(s):  
ML Veronese ◽  
M Ohta ◽  
J Finan ◽  
PC Nowell ◽  
CM Croce

Translocations involving chromosome 8 at band q24 and one of the Ig loci on chromosomes 14q32, 22q11, and 2p11 are the hallmark of Burkitt's lymphoma (BL). It has been previously observed that the exact localization of the breakpoints at chromosome 8q24 can vary significantly from patient to patient, scattering over a distance of more than 300 kb upstream of c-myc and about 300 kb downstream of c-myc. To generate probes for fluorescence in situ hybridization (FISH) that detect most c-myc translocations, we screened a yeast artificial chromosome (YAC) library from normal human lymphocytes by colony hybridization, using three markers surrounding the c-myc gene as probes. We obtained 10 YAC clones ranging in size between 500 and 200 kb. Two nonchimeric clones were used for FISH on several BL cell lines and patient samples with different breakpoints at 8q24. Our results show that the YAC clones detected translocations scattered along approximately 200 kb in both metaphase chromosomes and interphase nuclei. The sensitivity, rapidity, and feasibility in nondividing cells render FISH an important diagnostic tool. Furthermore, the use of large DNA fragments such as YACs greatly simplifies the detection of translocations with widely scattered breakpoints such as these seen in BL.


2003 ◽  
Vol 47 (5) ◽  
pp. 133-138 ◽  
Author(s):  
V. Ivanov ◽  
S.T.-L. Tay ◽  
J.-H. Tay

The goal of the research was the development of a simple method to quantify microbial groups in environmental samples. Fluorescence intensity was measured in the sample before and after whole cell fluorescence in situ hybridization with rRNA-targeted, fluorochrome-labeled oligonucleotide probes. To determine specific and non-specific binding of different oligonucleotide probes the following approaches have been used: (1) incubation of the sample with probes at two different temperatures; (2) hybridization of labeled probe in the presence of unlabeled probe; (3) incubation of the sample with labeled specific probe or labeled nonsense probe. Specific binding (hybridization) of the probe was calculated as the difference between total binding and non-specific binding of the probe. Specific binding was 40-50% of total binding in the environmental samples tested. The ratio of the specific binding of different probes may be used to quantify the ratio of different microbial groups in the environmental samples. This quantification is suitable for the microbiological monitoring of microbial aggregates because it is a simple technique and the results can be measured by a portable fluorometer.


2003 ◽  
pp. 21-40 ◽  
Author(s):  
Larry E. Morrison ◽  
Ramesh Ramakrishnan ◽  
Teresa M. Ruffalo ◽  
Kim A. Wilber

Genome ◽  
1997 ◽  
Vol 40 (4) ◽  
pp. 475-478 ◽  
Author(s):  
Martha I. Gómez ◽  
M. Nurul Islam-Faridi ◽  
Sung-Sick Woo ◽  
Don Czeschin Jr. ◽  
Michael S. Zwick ◽  
...  

Fluorescence in situ hybridization (FISH) of a 205 kb Sorghum bicolor bacterial artificial chromosome (BAC) containing a sequence complementary to maize sh2 cDNA produced a large pair of FISH signals at one end of a midsize metacentric chromosome of S. bicolor. Three pairs of signals were observed in metaphase spreads of chromosomes of a sorghum plant containing an extra copy of one arm of the sorghum chromosome arbitrarily designated with the letter D. Therefore, the sequence cloned in this BAC must reside in the arm of chromosome D represented by this monotelosome. This demonstrates a novel procedure for physically mapping cloned genes or other single-copy sequences by FISH, sh2 in this case, by using BACs containing their complementary sequences. The results reported herein suggest homology, at least in part, between one arm of chromosome D in sorghum and the long arm of chromosome 3 in maize.Key words: sorghum, maize, shrunken locus, physical mapping, fluorescence in situ hybridization, bacterial artificial chromosomes.


Sign in / Sign up

Export Citation Format

Share Document