Border-collision in piecewise-linear continuous maps

Author(s):  
Mario di Bernardo ◽  
Alan R. Champneys ◽  
Christopher J. Budd ◽  
Piotr Kowalczyk
2017 ◽  
Vol 27 (12) ◽  
pp. 1730042 ◽  
Author(s):  
David J. W. Simpson

As the parameters of a piecewise-smooth system of ODEs are varied, a periodic orbit undergoes a bifurcation when it collides with a surface where the system is discontinuous. Under certain conditions this is a grazing-sliding bifurcation. Near grazing-sliding bifurcations, structurally stable dynamics are captured by piecewise-linear continuous maps. Recently it was shown that maps of this class can have infinitely many asymptotically stable periodic solutions of a simple type. Here this result is used to show that at a grazing-sliding bifurcation an asymptotically stable periodic orbit can bifurcate into infinitely many asymptotically stable periodic orbits. For an abstract ODE system the periodic orbits are continued numerically revealing subsequent bifurcations at which they are destroyed.


2017 ◽  
Vol 27 (02) ◽  
pp. 1730010 ◽  
Author(s):  
David J. W. Simpson ◽  
Christopher P. Tuffley

We establish an equivalence between infinitely many asymptotically stable periodic solutions and subsumed homoclinic connections for [Formula: see text]-dimensional piecewise-linear continuous maps. These features arise as a codimension-three phenomenon. The periodic solutions are single-round: they each involve one excursion away from a central saddle-type periodic solution. The homoclinic connection is subsumed in the sense that one branch of the unstable manifold of the saddle solution is contained entirely within its stable manifold. The results are proved by using exact expressions for the periodic solutions and components of the stable and unstable manifolds which are available because the maps are piecewise-linear. We also describe a practical approach for finding this phenomenon in the parameter space of a map and illustrate the results with the three-dimensional border-collision normal form.


1981 ◽  
Vol 64 (10) ◽  
pp. 9-17 ◽  
Author(s):  
Toshimichi Saito ◽  
Hiroichi Fujita

Sign in / Sign up

Export Citation Format

Share Document