takagi sugeno
Recently Published Documents


TOTAL DOCUMENTS

2716
(FIVE YEARS 648)

H-INDEX

72
(FIVE YEARS 11)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 179
Author(s):  
Chokri Sendi

This paper investigates the performance of a fuzzy optimal variance control technique for attitude stability and vibration attenuation with regard to a spacecraft made of a rigid platform and multiple flexible appendages that can be retargeted to the line of sight. The proposed technique addresses the problem of actuators’ amplitude and rate constraints. The fuzzy model of the spacecraft is developed based on the Takagi-Sugeno(T-S) fuzzy model with disturbances, and the control input is designed using the Parallel Distributed Compensation technique (PDC). The problem is presented as an optimization problem in the form of Linear Matrix Inequalities (LMIs). The performance and the stability of the proposed controller are investigated through numerical simulation.


Author(s):  
Krzysztof Wiktorowicz ◽  
Tomasz Krzeszowski

AbstractSimplifying fuzzy models, including those for predicting time series, is an important issue in terms of their interpretation and implementation. This simplification can involve both the number of inference rules (i.e., structure) and the number of parameters. This paper proposes novel hybrid methods for time series prediction that utilize Takagi–Sugeno fuzzy systems with reduced structure. The fuzzy sets are obtained using a global optimization algorithm (particle swarm optimization, simulated annealing, genetic algorithm, or pattern search). The polynomials are determined by elastic net regression, which is a sparse regression. The simplification is based on reducing the number of polynomial parameters in the then-part by using sparse regression and removing unnecessary rules by using labels. A new quality criterion is proposed to express a compromise between the model accuracy and its simplification. The experimental results show that the proposed methods can improve a fuzzy model while simplifying its structure.


Author(s):  
Luis A. Poblete ◽  
Tonatiuh Hernández-Cortés ◽  
Víctor Estrada-Manzo

This paper is devoted to provide a numerical solution the nonlinear output regulation problem for descriptor systems. The control law under design is a nonlinear one, it consists on a nonlinear stabilizer combined with linear steady-state mapping as well as nonlinear steady-state input mapping; all of them are computed via linear matrix inequalities. A numerical example as well as a mechanical system as well are used to illustrate the viability of the proposed approach.


Author(s):  
Kaoutar Ouarid ◽  
Mohamed Essabre ◽  
Abdellatif El Assoudi ◽  
El Hassane El Yaagoubi

Singular nonlinear systems have received wide attention in recent years, and can be found in various applications of engineering practice. On the basis of the Takagi-Sugeno (T-S) formalism, which represents a powerful tool allowing the study and the treatment of nonlinear systems, many control and diagnostic problems have been treated in the literature. In this work, we aim to present a new approach making it possible to estimate simultaneously both non-measurable states and unknown faults in the actuators and sensors for a class of continuous-time Takagi-Sugeno singular model (CTSSM). Firstly, the considered class of CTSSM is represented in the case of premise variables which are non-measurable, and is subjected to actuator and sensor faults. Secondly, the suggested observer is synthesized based on the decomposition approach. Next, the observer’s gain matrices are determined using the Lyapunov theory and the constraints are defined as linear matrix inequalities (LMIs). Finally, a numerical simulation on an application example is given to demonstrate the usefulness and the good performance of the proposed dynamic system.


2021 ◽  
pp. 107754632110466
Author(s):  
Haohan Yang ◽  
Qingwei Liu ◽  
Yongchao Zhang ◽  
Fan Yu

This paper investigates an improved adaptive sliding mode fault-tolerant control strategy for a magnetorheological semi-active suspension system with parametric uncertainties and actuator faults. Using the experimental data collected by a quarter-vehicle test rig, an adaptive-network-based fuzzy inference system is employed to establish a learning-based magnetorheological damper model firstly. The Takagi-Sugeno fuzzy approach is introduced to deal with the uncertainties of sprung mass and pitch rotary inertia and then the corresponding Takagi-Sugeno faulty semi-active suspension system is constructed. An adaptive sliding mode fault-tolerant controller is proposed, in which the magnetorheological damper fault gain is observed by the designed estimation law, and the asymptotical stability of the system is further analyzed. Finally, numerical simulation tests are conducted to demonstrate the effectiveness of the designed control scheme.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Chin-Lin Pen ◽  
Wen-Jer Chang ◽  
Yann-Horng Lin

This paper develops a Takagi-Sugeno fuzzy observer gain design algorithm to estimate ship motion based on Automatic Identification System (AIS) data. Nowadays, AIS data is widely applied in the maritime field. To solve the problem of safety, it is necessary to accurately estimate the trajectory of ships. Firstly, a nonlinear ship dynamic system is considered to represent the dynamic behaviors of ships. In the literature, nonlinear observer design methods have been studied to estimate the ship path based on AIS data. However, the nonlinear observer design method is challenging to create directly since some dynamic ship systems are more complex. This paper represents nonlinear ship dynamic systems by the Takagi-Sugeno fuzzy model. Based on the Takagi-Sugeno fuzzy model, a fuzzy observer design method is developed to solve the problem of estimating using AIS data. Moreover, the observer gains of the fuzzy observer can be adjusted systemically by a novel algorithm. Via the proposed algorithm, a more suitable or better observer can be obtained to achieve the objectives of estimation. Corresponding to different AIS data, the better results can also be obtained individually. Finally, the simulation results are presented to show the effectiveness and applicability of the proposed fuzzy observer design method. Some comparisons with the previous nonlinear observer design method are also given in the simulations.


Sign in / Sign up

Export Citation Format

Share Document