smooth system
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 20)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Sharwari Udaykumar Shah ◽  
Dande Chandra Sekhar Charan ◽  
Bhooshan Rajpathak

2021 ◽  
Vol 31 (15) ◽  
Author(s):  
Zhongjian Wang ◽  
Dingheng Pi

In this paper, we study bifurcations of the regularized systems of planar piecewise smooth systems, which have a visible fold-regular point and a sliding or grazing heteroclinic loop. Our results show that if the planar piecewise smooth system with a sliding heteroclinic loop undergoes sliding heteroclinic bifurcation, then the regularized system can bifurcate with a stable limit cycle passing through the regularized region and at most two limit cycles outside the regularized region. The regularized system can have at most three periodic orbits. When the upper subsystem is a Hamiltonian system, the regularized system can bifurcate with a semi-stable periodic orbit. Finally, we discuss two cases when the heteroclinic loop of a piecewise smooth system remains unbroken under a small perturbation. Our results show that the regularized system can bifurcate at most two limit cycles from an inner unstable grazing heteroclinic loop.


2021 ◽  
Vol 31 (15) ◽  
Author(s):  
Fang Wu ◽  
Lihong Huang ◽  
Jiafu Wang

The objective of this paper is to study the sliding bifurcation in a planar piecewise smooth system with an elliptic switching curve. Some new phenomena are observed, such as a crossing limit cycle containing four intersections with the switching curve, sliding cycles having four sliding segments, and sliding cycles consisting of the entire switching curve. Firstly, we investigate the bifurcation of sliding cycle from a sliding heteroclinic connection to two cusps and show the appearance of one sliding cycle with two folds. To plot the bifurcation diagram, a planar piecewise linear system with two zones separated by an ellipse are considered. Moreover, we study in more detail the unfolding of a sliding cycle connecting four cusps by exhibiting its complete bifurcation diagram. More precisely, we explore the necessary and sufficient conditions for the existence of limit cycles and derive the concrete bifurcation curves. Additionally, a simple piecewise smooth system with nonlinear subsystems is studied, which shows the possibility of the existence of two nested limit cycles. Finally, numerical simulations are given to confirm the theoretical analysis.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Yuhki Hosoya

AbstractWe study a first-order nonlinear partial differential equation and present a necessary and sufficient condition for the global existence of its solution in a non-smooth environment. Using this result, we prove a local existence theorem for a solution to this differential equation. Moreover, we present two applications of this result. The first concerns an inverse problem called the integrability problem in microeconomic theory and the second concerns an extension of Frobenius’ theorem.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150159
Author(s):  
Ai Ke ◽  
Maoan Han

We study bifurcations of limit cycles arising after perturbations of a special piecewise smooth system, which has a center and a homoclinic loop. By using the Picard–Fuchs equation, we give an upper bound of the maximum number of limit cycles bifurcated from the period annulus between the center and the homoclinic loop. Furthermore, by applying the method of first-order Melnikov function we obtain a lower bound of the maximum number of limit cycles bifurcated from the center.


Author(s):  
S. Jelbart ◽  
K. U. Kristiansen ◽  
P. Szmolyan ◽  
M. Wechselberger

AbstractSingular exponential nonlinearities of the form $$e^{h(x)\epsilon ^{-1}}$$ e h ( x ) ϵ - 1 with $$\epsilon >0$$ ϵ > 0 small occur in many different applications. These terms have essential singularities for $$\epsilon =0$$ ϵ = 0 leading to very different behaviour depending on the sign of h. In this paper, we consider two prototypical singularly perturbed oscillators with such exponential nonlinearities. We apply a suitable normalization for both systems such that the $$\epsilon \rightarrow 0$$ ϵ → 0 limit is a piecewise smooth system. The convergence to this nonsmooth system is exponential due to the nonlinearities we study. By working on the two model systems we use a blow-up approach to demonstrate that this exponential convergence can be harmless in some cases while in other scenarios it can lead to further degeneracies. For our second model system, we deal with such degeneracies due to exponentially small terms by extending the space dimension, following the approach in Kristiansen (Nonlinearity 30(5): 2138–2184, 2017), and prove—for both systems—existence of (unique) limit cycles by perturbing away from singular cycles having desirable hyperbolicity properties.


2021 ◽  
Vol 42 (5) ◽  
pp. 641-648
Author(s):  
Shichao Ma ◽  
Xin Ning ◽  
Liang Wang ◽  
Wantao Jia ◽  
Wei Xu

AbstractIt is well-known that practical vibro-impact systems are often influenced by random perturbations and external excitation forces, making it challenging to carry out the research of this category of complex systems with non-smooth characteristics. To address this problem, by adequately utilizing the stochastic response analysis approach and performing the stochastic response for the considered non-smooth system with the external excitation force and white noise excitation, a modified conducting process has proposed. Taking the multiple nonlinear parameters, the non-smooth parameters, and the external excitation frequency into consideration, the steady-state stochastic P-bifurcation phenomena of an elastic impact oscillator are discussed. It can be found that the system parameters can make the system stability topology change. The effectiveness of the proposed method is verified and demonstrated by the Monte Carlo (MC) simulation. Consequently, the conclusions show that the process can be applied to stochastic non-autonomous and non-smooth systems.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fang Wu ◽  
Lihong Huang ◽  
Jiafu Wang

<p style='text-indent:20px;'>In this paper, we consider the nonsmooth bifurcation around a class of critical crossing cycles, which are codimension-2 closed orbits composed of tangency singularities and regular orbits, for a two-parameter family of planar piecewise smooth system with two zones. By the construction of suitable displacement function (equivalently, Poincar<inline-formula><tex-math id="M1">\begin{document}$ {\rm\acute{e}} $\end{document}</tex-math></inline-formula> map), the stability and the existence of periodic solutions under the variation of the parameters inside this system are characterized. More precisely, we obtain some parameter regions on the existence of crossing cycles and sliding cycles near those loops. As applications, several examples are given to illustrate our main conclusions.</p>


2020 ◽  
pp. 263145412097481
Author(s):  
Girish Balasubramanian

Behavioural economics has its roots in the problems of rationality and optimising the expected utility, specially the empirical evidence of individuals acting against expected norms. Artificial intelligence (AI), on the other hand, is premised on the dominant idea being that because of the dispositional factors, the human being often might be akin to a disturbance to an otherwise smooth system. Thus, the intersection of both these areas is decision-making under uncertainty. Both these concepts put together have interesting implications for organisations. This article explores the impact of AI and Behavioural Economics on the human resources (HR) function of an organisation. Some of the contemporary applications of AI augmenting decision-making have been presented using the lens of the HR Value Chain. Based on these applications, implications for organisations are discussed. Despite limitations, AI, as a technology, is soon going to be embraced by the firms, leading to hybrid organisations. As a result, organisations need to redesign their processes and policies.


Sign in / Sign up

Export Citation Format

Share Document