Numerical Modeling of Recycled Rubber Based Composites Reinforced with Glass Fibers at High Strain Rates

Author(s):  
G. K-Cakir ◽  
O. Aslan ◽  
E. Bayraktar
2012 ◽  
Vol 527 ◽  
pp. 159-164 ◽  
Author(s):  
Dmitri Gomon ◽  
Mikko Hokka ◽  
Veli Tapani Kuokkala

The current research concentrates on the characterization of the mechanical behavior of Ti-6Al-2Sn-4Zr-6Mo alloy. The material was studied in compression using the Split Hopkinson Pressure Bar (SHPB) equipment at high strain rates and conventional servohydraulic materials testing devices at low strain rates. The tests were performed at temperatures ranging from room temperature up to 600 °C. According to the results of the compression tests, the strain hardening rate of the studied material decreases strongly with increasing strain rate. The observed strong decrease in the strain hardening rate with increasing strain rate is a consequence of the extremely strong adiabatic heating of the material due to its high strength and low thermal conductivity. In this study, the Johnson-Cook material model parameters were obtained from isothermal stress-strain curves that were calculated from the experimental (adiabatic) stress-strain data. In this paper, the results of the mechanical testing at high strain rates and the numerical modeling of the material behavior are presented and discussed in details.


2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-335-Pr9-340 ◽  
Author(s):  
E. El-Magd ◽  
M. Brodmann

2003 ◽  
Vol 110 ◽  
pp. 571-576 ◽  
Author(s):  
A. A. Mir ◽  
D. C. Barton ◽  
T. D. Andrews ◽  
P. Church

Sign in / Sign up

Export Citation Format

Share Document