Real Interpolation of Banach Spaces

Author(s):  
Werner O. Amrein ◽  
Anne Boutet Monvel ◽  
Vladimir Georgescu
Author(s):  
Werner O. Amrein ◽  
Anne Boutet Monvel ◽  
Vladimir Georgescu

1995 ◽  
Vol 171 (1) ◽  
pp. 259-268
Author(s):  
D. N. Kutzarova ◽  
L. Y. Nikolova ◽  
T. Zachariades

1993 ◽  
Vol 115 (2) ◽  
pp. 243 ◽  
Author(s):  
R. R. Coifman ◽  
S. Semmes

2000 ◽  
Vol 52 (5) ◽  
pp. 920-960 ◽  
Author(s):  
W. D. Evans ◽  
B. Opic

AbstractWe present “reiteration theorems” with limiting values θ = 0 and θ = 1 for a real interpolation method involving broken-logarithmic functors. The resulting spaces lie outside of the original scale of spaces and to describe them new interpolation functors are introduced. For an ordered couple of (quasi-) Banach spaces similar results were presented without proofs by Doktorskii in [D].


1999 ◽  
Vol 29 (3) ◽  
pp. 1085-1101
Author(s):  
L.Y. Nikolova ◽  
T. Zachariades

1998 ◽  
Vol 82 (1) ◽  
pp. 138 ◽  
Author(s):  
Fernando Cobos ◽  
Lars-Erik Persson

2019 ◽  
Vol 124 (2) ◽  
pp. 247-262
Author(s):  
Eduardo Brandani Da Silva ◽  
Dicesar Lass Fernandez

The behavior of bilinear operators acting on the interpolation of Banach spaces in relation to compactness is analyzed, and an one-sided compactness theorem is obtained for bilinear operators interpolated by the ρ interpolation method.


Sign in / Sign up

Export Citation Format

Share Document