Spectral Invariance and Submultiplicativity for the Algebras of S(M, g)-pseudo-differential Operators on Manifolds

Author(s):  
F. Baldus
Filomat ◽  
2017 ◽  
Vol 31 (6) ◽  
pp. 1791-1801
Author(s):  
Akhilesh Prasad ◽  
Manoj Singh

Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 65
Author(s):  
Benjamin Akers ◽  
Tony Liu ◽  
Jonah Reeger

A radial basis function-finite differencing (RBF-FD) scheme was applied to the initial value problem of the Benjamin–Ono equation. The Benjamin–Ono equation has traveling wave solutions with algebraic decay and a nonlocal pseudo-differential operator, the Hilbert transform. When posed on R, the former makes Fourier collocation a poor discretization choice; the latter is challenging for any local method. We develop an RBF-FD approximation of the Hilbert transform, and discuss the challenges of implementing this and other pseudo-differential operators on unstructured grids. Numerical examples, simulation costs, convergence rates, and generalizations of this method are all discussed.


Sign in / Sign up

Export Citation Format

Share Document